LESSON 11.1

Investigate • Model Perimeter

focus conerence plicor LESSON AT A CLANCE

FC R Focus:

Common Core State Standards

3.MD.D. 8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
MATHEMATICAL PRACTICES (See Mathematical Practices in GO Math! in the Planning Guide for full text.) MP1 Make sense of problems and persevere in solving them. MP3 Construct viable arguments and critique the reasoning of others. MP4 Model with mathematics. MP7 Look for and make use of structure.

F C R R Coherence:

Standards Across the Grades
Before Grade 3 After
2.MD.B. 5 3.MD.D. 8 4.MD.A. 3

F CR Rigor:
Level 1: Understand Concepts. \qquad Share and Show (Checked Items)
Level 2: Procedural Skills and Fluency On Your Own, Practice and Homework Level 3: Applications

Think Smarter and Go Deeper

Learning Objective

Explore perimeter of polygons by counting units on grid paper.

Language Objective

Student pairs point to an example in the textbook and explain how can you find perimeter.

Materials

MathBoard, geoboard, rubber bands

F CR For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.

About the Math

Professional Development

Teaching for Depth

This lesson involves modeling perimeter. An important goal of the lesson is for students to understand that perimeter represents the distance around a shape. It may help some students to think of perimeter as the length of a fence that encloses a space, like a yard or a garden.

The term perimeter can refer to the distance around polygons (such as triangles and rectangles) or the distance around non-polygons (such as shapes with curved paths). In these lessons, students are finding only the perimeter of polygons to transition into finding the perimeter and area of rectangles. If students are having difficulty with the concept of perimeter, have them place string around the edge of a shape and then find the length of the string.

Professional Development Videos

C U
 DIGITAL

Interactive Student Edition

Personal Math Trainer

Math on the Spot Video
Animated Math Models
iT iTools: Geometry
MM нмн Mega Math

Daily Routines

Common Core

Problem of the Day 11.1
What fraction of the rectangle is shaded blue?

$\frac{5}{8}$

Vocabulary perimeter

Vocabulary Builder

Materials Semantic Map (see eTeacher Resources)
Have students list words or phrases that are related to the term perimeter.

Literature Connection

James' Frames

From the Grab-and-Go ${ }^{\text {TM }}$ Differentiated Centers Kit

Students read about using perimeter to find how much wood is needed to make picture frames.

(1) ENGAGE

with the Interactive Student Edition

Essential Question

How can you find perimeter?

Making Connections

Invite students to tell you what they know about the distance around objects.
Have you ever measured the distance around an object? If so, how? Possible answer: I used a ruler or walked around the object.

Learning Activity

What is the problem the students are trying to solve? Connect the story to the problem.

- What problem are you trying to solve? find the perimeter of the sign
- What type of sign is it? the speed limit sign
- What shape is the speed limit sign? rectangle
- What might you use to help solve this problem? grid paper
- What will each square represent on the grid paper? a unit of measurement

Literacy and Mathematics
 Choose one or more of the following activities.

- Have students discuss what mathematical operation they might use to solve the problem. Why did they choose this mathematical operation? Have students write the reasons why the other operations would not work.
- Have students discuss different ways to measure the distance around an object. Have students measure objects in the classroom using these methods.

LESSON 11.1

(2) EXPLORE

Investigate

(cien MATHEMATICAL PRACTICES
Make sure students understand that perimeter is a measure of the distance around a figure.
The vertical distance or horizontal distance between 2 pegs on the geoboard is 1 unit. The diagonal distance between 2 pegs is not 1 unit

- What do you notice about the lengths of the opposite sides of the rectangle you made on the geoboard? The lengths of the opposite sides are equal
Point out that we can say the rectangle measures 2 units by 3 units or we can say that it measures 3 units by 2 units.
Have students note that three dots are connected to draw a length of 2 units, and four dots are connected to draw a length of 3 units. The unit is the distance between the dots, not the number of dots.

MP7 Look for and make use of structure.

- Why are four addends used to find the perimeter of the rectangle? A rectangle has four sides.
- How many addends would there be if you need to find the perimeter of a pentagon? 5

 Strategy:

Restate

Students can demonstrate understanding of perimeter when the definition is restated

- Read aloud the definition of perimeter.
- Restate the definition using gestures, drawings or by modeling with real objects such as a piece of paper or a MathBoard.
- Use the sentence frame: When I measure the perimeter, I measure \qquad .
- Have students write or draw the restated definition in their Math Journal.

MP4 Model with mathematics.

- Use the geoboard to make a pentagon with side lengths of 3 units. Write an addition equation to show the perimeter. $3+3+3+$ $3+3=15$
3.MD.D. 8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

Name

Lesson 11.1

Model Perimeter

Essential Question How can you find perimeter?

Investigate

Perimeter is the distance around a figure.
Materials \quad geoboard $■$ rubber bands
You can find the perimeter of a rectangle on a geoboard or on dot paper by counting the number of units on each side.
A. Make a rectangle on the geoboard that is 3 units on two sides and 2 units on the other two sides.

Possible
B. Draw your rectangle on this dot paper. drawing is
shown.

- •
\qquad
C. Write the length next to each side of your rectangle.
D. Add the number of units on each side.
$3+2+3+2=10$
E. So, the perimeter of the rectangle
is 10 units.
- How would the perimeter of the rectangle change if the length of two of the sides was 4 units instead of 3 units? The perimeter would increase by 2 units. $4+2+4+2=12$ units
3.MD.D. 8

Measurement and DataHEMATICAL PRAC MP1, MP3, MP4, MP7 MP1, MP3, MP4, MP7

Draw Gonclusions

1. Describe how you would find the perimeter of a rectangle that is 5 units wide and 6 units long.
I can add, $5+6+5+6=22$ units.
2. THINKSMazte A rectangle has two pairs of sides of equal length. Explain how you can find the unknown length of two sides when the length of one side is 4 units, and the perimeter is 14 units.

Possible explanation: since a rectangle has two pairs of sides of equal length,
$4+4=8$; then 1 subtract; $14-8=6$. Since the other two sides are also equal,
I divide by $2 ; 6 \div 2=3$. So, the unknown side length is 3 units.
 a figure with all sides of equal length is easier than finding the perimeter of other figures. Do you agree? Explain.

Yes; possible explanation: because all of the sides have equal length, I can
multiply the length of one side by the number of sides the figure has.

Make Connections

You can also use grid paper to find the perimeter of figures by counting the number of units on each side.

Start at the arrow and trace the perimeter. Begin counting with 1 . Continue counting each unit around the figure until you have counted each unit.
Possible answers are given.
(A)

Perimeter $=16$ units

See Additional Answers,

 TE p. 626.

Perimeter $=14$ units

Advanced Learners (1) Logical Vissual Individual

Materials rulers, poster board

- Give students an opportunity to find the perimeter of five classroom objects, such as desks, windows, doors, and storage containers. Have them order the objects from least perimeter to greatest perimeter.
- Have students make a poster that shows the name of the item and its perimeter.
- Allow time for students to present their posters.
- Which object has the least perimeter? Which object has the greatest perimeter?
Answers will vary.
- Have students predict more perimeters and order the objects from least to greatest perimeter. Then they should measure to check their perimeters.

Draw Conclusions

THINK SMARTER

Exercise 2 requires students to use what they know about perimeter to find an unknown side length of a rectangle.

MP1 Make sense of problems and persevere in solving them.

- Each side of a six-sided figure is 2 units long. Give two ways you could find the perimeter of the figure. Multiply 2×6 or add $2+2+2+2+2+2$.
MP6 Attend to precision. After students complete the exercises, ask:
- Explain how multiplication and addition can be used to find the perimeter of a rectangle. Double the length and double the width (or multiply each measure by 2), and then find the sum of the products.

Make Connections

Ask students to count the units in a counterclockwise direction.

- Were there places that you miscounted the units? Possible answer: I miscounted units at the corners, or right angles.
- Is there anything you can do to prevent miscounting in those places? Possible answers: I can write the number on the side rather than next to it while counting or mark each side as I count it.

Talk

Use Math Talk to focus on students' understanding of perimeter.

Answer for Math Talk in the Student Edition: Possible explanation: if a rectangle has a perimeter of 12 units, it could be 3 units wide and 3 units long; 2 units wide and 4 units long; 4 units wide and 2 units long; 1 unit wide and 5 units long; 5 units wide and 1 unit long.

COMMON ERRORS

Error Students count incorrectly when finding the perimeter of an irregular figure.
Example Students might give the perimeter of figure B as 12 units.

Springboard to Learning Demonstrate how students can check their answer by moving around the figure in the opposite direction, counting by ones and placing a mark on each side that has been counted.

3 EXPLAIN

Share and Show

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking. Encourage students to place a mark on the figure where they begin counting the units so they will know when to stop counting.
Use the checked exercises for Quick Check.

(4) ELABORATE

Problem Solving • Applications
 coll

Cime MAThEMATICAL Practic:s

MP6 Attend to precision. For Exercise 7, you may need to remind students that they can use either addition or multiplication to find the perimeter of a triangle with three sides of equal length.

Name

Share and Show

MATH BOARD

Find the perimeter of the figure. Each unit is 1 centimeter.
1.

12 centimeters
3.

12 centimeters
Find the perimeter.
5. A figure with four sides that measure 4 centimeters, 6 centimeters, 5 centimeters, and 1 centimeter

16 centimeters

16 centimeters
4.

18 centimeters

6 6. A figure with two sides that measure 10 inches, one side that measures 8 inches, and one side that measures 4 inches
32 inches

Problem Solving • Applications

7.

Explain how to find the length of each side of a triangle with sides of equal length and a perimeter of 27 inches.
Possible explanation: since the three sides are equal lengths, you can divide the
perimeter by the number of sides; the perimeter is 27 inches, so each side is 9 inches.
8. THINKSmakize Luisa drew a rectangle with a perimeter of 18 centimeters. Select the rectangles that Luisa could have drawn. Mark all that apply. Use the grid to help you.
(A) 9 centimeters long and 2 centimeters wide

6 centimeters long and 3 centimeters wide
(C) 4 centimeters long and 4 centimeters wide

5 centimeters long and 4 centimeters wide

- 7 centimeters long and 2 centimeters wide

9. THINKSMARIER What's the Error? Kevin is solving perimeter problems. He counts the units and says that the perimeter of this figure is 18 units.

- (GoDEPER) Describe the error Kevin made. Circle the places in the drawing of Kevin's solution where he made an error. Kevin did not count all of the units in the figure. At two of the corners, he did not count correctly.

628

DIFFERENTIATED INSTRUCTION INDEPENDENT ACTIVITIES

Activities

Jump to 9

Students complete blue Activity Card 6 by measuring and then adding lengths.

Activities Perimeter Parade

Students complete orange Activity Card 10 by finding the perimeter of pattern blocks.

Literature
James' Frames

Students read about using perimeter to find how much wood is needed to make picture frames.

(camoe MATHEMATICAL PRACTICES

THINK SMARIER

This item assesses students' understanding of perimeter. Using the grid as an aid to sketch a rectangle, students should realize that a correct answer must be $2 \times$ (length + width) $=18$. Students who incorrectly select A, likely multiplied the two given measures.

THINK SMARTER

Discuss and complete Exercise 9 as a class.

Math on the Spot Video Tutor

Use this video to help students model and solve this type of Think Smarter problem.

Math on the Spot videos are in the Interactive Student Edition and at www.thinkcentral.com.

MP3 Construct viable arguments and critique the reasoning of others. Extend the activity by encouraging volunteers to draw a figure of their own design. Designs can be exchanged among volunteers who will be challenged to find the perimeters, or they can be displayed on the overhead and completed as whole-class activities.

(5) EVALUATE
 Formative Assessment

Essential Question

Using the Language Objective

Reflect Have students work in pairs to find an example in the textbook and then explain to answer the Essential Question.
How can you find perimeter? Possible answer: to find the perimeter of a figure, I can add the lengths of its sides to find the sum. If all of the sides are equal in length, I can multiply the length of each side by the number of sides.

Math Journal WRITE Math

Draw a rectangle and another figure that is not a rectangle by tracing lines on grid paper. Describe how to find the perimeter of both figures.

Practice and Homework

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers. Geometric measurement: recognizz perimeter
as an attribute of plane figures and distinguish between linear and area measures.
Find the perimeter of the figure. Each unit is 1 centimeter.
 centimeters

Problem Solving

Use the drawing for 3-4. Each unit is 1 centimeter.
3. What is the perimeter of Patrick's figure?

20 centimeters
4. How much greater is the perimeter of Jillian's shape than the perimeter of Patrick's figure?

2 centimeters

5. WRITE Math Draw a rectangle and another figure that is not a rectangle by tracing lines on grid paper. Describe how to find the perimeter of both figures.
Check students' work.

Math Talk in Action

The class is discussing a strategy that can be used to find the perimeter of any polygon in which all the sides are the same length.

Teacher: A triangle has side lengths of 9 inches. It is a special shape because all its sides are the same length. One way to find the perimeter of the triangle is to add the three lengths. Who can think of another way to find the perimeter of this triangle?
Jana: Multiply the length of one side by 3.
Teacher: Why can you multiply?
Jana: \quad All the sides have the same length, so it's like combining equal groups.
Teacher: Right. All four sides of a square have the same length. How could we use multiplication to find the perimeter of a square?

Yvonne: Multiply the length of one side by 4.
Teacher: Right. Can we find a pattern? How could we find the perimeter of any shape in which all the sides are the same length?
Marcus: Multiply the length of one side by the number of sides the shape has.
Teacher: Yes! You have just stated something mathematicians call a generalization, and it is an awesome one!

Lesson Check (з.мо...8)

1. Find the perimeter of the figure. Each unit is 1 centimeter.

2. Find the perimeter of the figure. Each unit is 1 centimeter.

\qquad
20 centimeters

Spiral Review (3.N.A.Зз, з.мD.A.1, з.мD.А.2)
3. Order the fractions from least to greatest.
$\frac{2}{4}, \frac{2}{3}, \frac{2}{6}$
4. Kasey's school starts at the time shown on the clock. What time does Kasey's school start?

$\frac{2}{6}, \frac{2}{4}, \frac{2}{3}$
8:30
5. Compare. Write $<,>$, or $=$.
6. Aiden wants to find the mass of a bowling ball. Which unit should he use?

kilogram

630

Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.

In Chapter 11, students extend their understanding of perimeter and area to volume by finding the volume of a book. These same topics are used often in the development of various science concepts and process skills.

Help students make the connection between math and science through the S.T.E.M. activities and activity worksheets found at www.thinkcentral.com. In Chapter 11, students connect math and science with the S.T.E.M. Activity What's the Volume? and the accompanying worksheets (pages 117 and 118).

Through this S.T.E.M. Activity, students will connect the GO Math! Chapter 11 concepts and skills with various methods to calculate volume, including multiplying the length, width, and height of a box. Students will also discover the overall role that math plays in science. It is recommended that this S.T.E.M. Activity be used after Lesson 11.8 .

LESSON 11.2

Find Perimeter

FOCUS

 conerence ricor LESSON AT A GLANCE
F C R Focus:

Common Core State Standards

3.MD.D. 8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters
Also 3.NBT.A.2, 3.MD.B. 4
MATHEMATICAL PRACTICES (See Mathematical Practices in GO Math! in the Planning Guide for full text.)
MP4 Model with mathematics. MP5 Use appropriate tools strategically.
MP6 Attend to precision. MP7 Look for and make use of structure.

F C R R Coherence:

Standards Across the Grades
Before Grade 3 After
2.MD.B. 5 3.MD.D. 8 4.MD.A. 3

F CR Rigor:

Level 1: Understand Concepts \qquad Share and Show (Checked Items)
Level 2: Procedural Skills and Fluency On Your Own, Practice and Homework Level 3: Applications

Think Smarter and Go Deeper

Learning Objective

Estimate and measure perimeter of polygons using inch and centimeter rulers.

Language Objective

Students write in their Math Journal the steps you take to measure perimeter.

Materials

MathBoard, inch ruler, centimeter ruler

F CR For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.

About the Math

Professional Development

Why Teach This

In this lesson, students will estimate and measure perimeter. Estimating perimeter is valuable when students check their answer for reasonableness. An estimate is used as a benchmark or a standard to which an actual answer is compared.

- Although an estimate of a perimeter can be made before or after finding that perimeter, we typically ask students to estimate first. Then answers are compared to the estimates and judged for reasonableness.
- Using an estimate not only enables students to check for reasonableness, it also fosters critical thinking skills. The ability to estimate (and find) perimeter is not only a useful math skill but also a practical life skill.

Professional Development Videos

SE Interactive Student Edition

Personal Math Trainer
Math on the Spot Video
Animated Math Models
iT iTools: Geometry

HMH Mega Math

Daily Routines

Common Core

Problem of the Day 11.2
What is the unknown number in the table?

Tents	4	5	6	7
Campers	32	40		56

48

Vocabulary

Fluency Builder $\begin{aligned} & \text { Common Core Fluency } \\ & \text { standard }\end{aligned}$

Mental Math Students should recall how to add more than two numbers. Have them find the sums.

$$
\begin{aligned}
& 3+6+3+618 \\
& 11+6+1532 \\
& 2+1+3+4+313 \\
& 2+2+2+17 \\
& 12+5+1229 \\
& 3+4+3+414 \\
& 2+2+2+28 \\
& 3+4+3+1+2+114
\end{aligned}
$$

Pages 102-103 in Strategies and Practice for Skills and Facts Fluency provide additional fluency support for this lesson.

(1) ENGAGE

with the Interactive Student Edition

Essential Question

How can you measure perimeter?

Making Connections

Invite students to tell you what they know about triangles.
What is a triangle? A triangle is a plane figure with three straight sides and three angles. Where do you see triangles in everyday life? Possible answer: in art work; on your math textbook

Learning Activity

What is the problem the students are trying to solve? Connect the story to the problem.

- What is the problem you are trying to solve? Find the perimeter of the triangle.
- What tool are you going to use? a ruler
- What are you going to measure with the ruler? the perimeter of the triangle
- Have students think about how they found the perimeter using grid paper in the past.

Literacy and Mathematics
 Choose one or more of the following activities.

- Have students explain how they might find the perimeter without using grid paper. Have students write a set of instructions on how to find the perimeter of a figure without using grid paper. Then have the students explain their reasoning to a partner.
- Have students discuss how they have used rulers in the past. Have students explain how they used rulers to measure various objects.

Lesson 11.2

(2) EXPLORE

 given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
Unlock the Problem

(ciem MATHEMATICAL PRACTICES

Activity

Review customary benchmarks for length.

- What part of your hand is about 1 inch long? Possible answer: the distance from the tip of my thumb to the first knuckle is about 1 inch.
- What is the length of a sheet of notebook paper? The length is about 12 inches, or 1 foot long.
MP5 Use appropriate tools strategically.
Ask students to give an example of how each benchmark can be used to estimate a length. Then complete the activity.
Students will measure to the nearest inch instead of the nearest half inch so that they do not have to add fractional parts.

Use Math Talk to check students' understanding of using an estimate to check for reasonableness.

Try This!

If the sides of the figures are measured correctly, each length will be a whole number of inches or centimeters.

MP6 Attend to precision.

- Compare and contrast the meanings of "length" and "perimeter." Possible answer length is a measurement from one end to another of a line segment or side. Perimeter is also a length, but it is the total distance around a figure

 Strategy:

Cooperative Grouping
Students solidify their understanding of perimeter through cooperative grouping

- Partner students with similar language levels.
- Have them measure perimeter using examples in the lesson.
- Have students describe to one another how to measure perimeter with an inch ruler using the sentence frame, The sides measure \qquad inch(es), \qquad inch(es), and inch(es), which equals a total perimeter of
\qquad inch(es).

Name

Lesson 11.2

Find Perimeter
Essential Question How can you measure perimeter?
Common Measurement and Data3.MD.D. 8 Also 3.NBT.A.2, 3.MD.B. 4 MATHEMATICAL PRACTICE
You can estimate and measure perimeter in standard units, such as inches and centimeters

Punlock the Problem
Find the perimeter of the cover of a notebook.
(1) Activity Materials \quad inch ruler $\begin{aligned} & \text { Possible answers } \\ & \text { are given. }\end{aligned}$

STEP 1 Estimate the perimeter of a notebook in inches. Record your estimate.

40 inch
STEP 2 Use an inch ruler to measure the length of each side of the notebook to the nearest inch.

STEP 3 Record and add the lengths of the sides measured to the nearest inch.

$$
9+12+9+12=42
$$

So, the perimeter of the notebook cover measured
to the nearest inch is $\quad 42$ inches.

Answers will vary. Possible answer: the estimate, 40 inches, is close to but less than the actual measurement, 42 inches.

Use an inch ruler to find the length of each side.	Use a centimeter ruler to find the length of each side.
\square	
Add the lengths of the sides:	Add the lengths of the sides:
$1+2+2$	$3+\underline{3}+\underline{3}+\underline{12}$
The perimeter is 6	The perimeter is 12 centimeters.

Chapter 11631

Use a centimeter ruler to find the perimeter.

MATHEMATICAL PRACTICES (2)
Reason Abstractly How do you use addition to find the perimeter of a figure?

Possible explanation: I add the length of each of the sides of the figure. The sum of all the side lengths is the perimeter of the figure.
2.

14 centimeters
Use an inch ruler to find the perimeter.
4.

8 inches

O3.

13 centimeters
(o) 5.

1 in.

3 EXPLAIN

Share and Show
 MATH

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

Use Math Talk to focus on how to use addition to find the perimeter.
Before the figures on this page are measured, you might choose to have students estimate each perimeter. After the figures have been measured, discuss how the estimates can be used to help decide the reasonableness of the exact answers.
Use the checked exercises for Quick Check.

COMMON ERRORS

Error When a length is not given, the length is assumed.

Example One side of the triangle in Exercise 1 is measured. The lengths of the other sides are assumed, not measured.

Springboard to Learning Discuss the triangle in Exercise 1, and point out that we are not told that the triangle has three sides of equal length. Lead students to understand that although all of the sides of the triangle appear to be the same length, they must measure each side to check that they are the same.

On Your Own

If students complete the checked exercises correctly, they may continue with the On Your Own section.
If the sides of the figures are measured correctly, each length will be a whole number of inches or centimeters.
MP4 Model with mathematics. Students should recognize that they need to keep track of the length of each side of the figure as they draw. If they draw three sides that equal 20 centimeters, then the length of the final side can be only 4 centimeters. Students must plan their figure so that the perimeter has no more than 24 centimeters.
Have students share their figures with the class. Discuss how different figures can have the same perimeter.
MP7 Look for and make use of structure. After students complete Exercises 6 and 7, sketch the figure shown below on the board. (The figure has two unknown side lengths.)

Challenge students to find the perimeter of the figure. 54 centimeters. The unknown horizontal length is 7 cm ; the unknown vertical length is 4 cm .

On Your Own

Use a ruler to find the perimeter.

8. Maniknle (4) Model Mathematics Use the grid paper to draw a figure that has a perimeter of 24 centimeters. Label the length of each side. Check students' drawings.

PROBLEM TYPE SITUATIONS

Addition and Subtraction

Put Together/Take Apart • Total Unknown

Exercises: 9, 10, 11, 12, 13
Put Together/Take Apart • Addend Unknown
Exercise: 12

Compare • Difference Unknown

Exercise: 10

Multiplication and Division

Equal Groups • Unknown Product
Exercise: 11
Equal Groups • Group Size Unknown
Exercise: 12

Problem Solving • Applications

Use the photos for 9-10.
9. Which of the animal photos has a perimeter of 26 inches?
10.
(GODEPPR How much greater is the perimeter of the bird photo than the perimeter of the cat photo?

4 inches
11. THINK SMAARER Erin is putting a fence around her square garden. Each side of her garden is 3 meters long. The fence costs $\$ 5$ for each meter. How much will the fence cost?
\qquad
12. WRITE Math Gary's garden is shaped like a rectangle with two pairs of sides of equal length, and it has a perimeter of 28 feet. Explain how to find the lengths of the other sides if one side measures 10 feet.

Possible explanation: I know that his garden
has four sides with two pairs of sides of equal
length; $10+10=20 ; 28-20=8 ; 8 \div 2=4 ;$
so, each of the other two sides is 4 feet;
$10+4+10+4=28$.
13. THINK SMARER Use an inch ruler to measure this sticker to the nearest inch. Then write an equation you can use to find its perimeter.
$3+2+3+2=10$, or $(3 \times 2)+(2 \times 2)=10$

634

DIFFERENTIATED INSTRUCTION INDEPENDENT ACTIVITIES

Activities

Jump to 9

Students complete blue Activity Card 6 by measuring and then adding lengths.

Activities
Perimeter Parade

Students complete orange Activity Card 10 by finding the perimeter of pattern blocks.

Literature
James' Frames

Students read about using perimeter to find how much wood is needed to make picture frames.

(4) ELABORATE

Problem Solving • Applications
(eme MATHEMATCAL Practic:s
THINK SMARTER
For Exercise 11, students need to analyze and solve a multistep problem.

Math on the Spot Video Tutor

Use this video to help students model and solve this type of Think Smarter problem.

Math on the Spot videos are in the Interactive Student Edition and at www.thinkcentral.com.

For Exercise 12, some students may find it helpful to first sketch the rectangle and label one of its sides as 10 feet.

THINK SMARIER

Students should recognize that this is a two-step problem. They must first measure the sticker to determine whole number inches for length and width. Then students use those numbers to write an equation to find perimeter. Some students may have difficulty writing the equation, even though they find the correct perimeter. Help them translate the steps they took into numbers and symbols.

5 EVALUATE $\begin{gathered}\text { Assessmentive } \\ \text { Form }\end{gathered}$

Essential Question

Using the Language Objective
Reflect Have students write in their Math Journal to answer the Essential Question.
How can you measure perimeter?
Possible answer: I can estimate the perimeter of a figure by using benchmarks. I can use an inch ruler to find the length of each side. Then I add the lengths and compare the perimeter to the estimate.

Math Journal WRITE Math

Draw two different figures that each have a perimeter of $\mathbf{2 0}$ units.

Practice and Homework

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers.

Name
Find Perimeter

Use a ruler to find the perimeter. Geometric measurement: recognize perimeter
as an attribute of plane figures and distinguish between linear and area measures.
1.

12 centimeters

Problem Solving

Draw a picture to solve 3-4.
3. Evan has a square sticker that measures 5 inches on each side. What is the perimeter of the sticker?
\qquad

13 centimeters
4. Sophie draws a shape that has 6 sides. Each side is 3 centimeters. What is the perimeter of the shape?

18 centimeters
5. WRITE Math Draw two different figures that each have a perimeter of 20 units.

Extend the Math Activity

Two Ways to Measure Perimeter

Materials string, scissors, ruler, paper, pencil
Investigate In this activity, students explore two ways to measure perimeter. For both ways, students translate the side measures to a straight-line measure and then find that length.

- Have students choose a small object in the classroom.
- They should cut a length of string to be the same length as one side of the object. They should repeat this for each side of the object.
- Have students line up all the strings to form one line and then measure the length of all the string.

Math Talk Why does the length of the string represent the
perimeter of the object? Possible answer: the perimeter is the length all the way around an object, and the string went all the way around the object, so it is the same length as the perimeter.

For this part of the activity, students will measure a line that they make for the length of the sides of the object.

- Have students measure the length of one side of the object. They should then draw a line that is the same length.
- Have students measure the next side of the object. Then, students should draw a line that length so that it forms a straight line with the first length. They should continue measuring and drawing for each side of the object.
- Have them measure the length of the line they drew.

Summarize Have students describe how this method is like finding perimeter in the lesson.

Lesson Check (з..м....8)

Use an inch ruler for 1-2.

1. Ty cut a label the size of the shape shown. What is the perimeter, in inches, of Ty's label?

6 inches
2. Julie drew the shape shown below. What is the perimeter, in inches, of the shape?

\qquad

Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.

LESSON 11.3

Algebra•Find Unknown Side Lengths

rocus conerence picor LESSON AT A CLANCE

F C R Focus:

Common Core State Standards

3.MD.D. 8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.
Also 3.NBT.A. 2
MATHEMATICAL PRACTICES (See Mathematical Practices in GO Math! in the Planning Guide for full text.)
MP1 Make sense of problems and persevere in solving them. MP4 Model with mathematics.
MP7 Look for and make use of structure. MP8 Look for and express regularity in repeated reasoning.

F C R Coherence:

Standards Across the Grades
Before Grade 3 After
2.MD.B. 5 3.MD.D. 8 4.MD.A. 3

F C R Rigor:

Level 1: Understand Concepts \qquad Share and Show (Checked Items)
Level 2: Procedural Skills and Fluency On Your Own, Practice and Homework
Level 3: Applications.
Think Smarter and Go Deeper

Learning Objective

Find the unknown length of a side of a polygon when you know its perimeter.

Language Objective

Student teams develop a concise explanation of how to find the unknown length of a side in a plane figure when you know its perimeter.

Materials
 MathBoard

F CR For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.

About the Math

Professional Development

MP2 Reason abstractly and quantitatively

In this lesson, students use algebra concepts that require them to think abstractly. They have not yet learned the formal definition of a variable, but they should understand that they can represent an unknown value, such as a side length, with a letter or symbol.
Students will also write addition and multiplication equations to find perimeter in this lesson. Students learn to represent the perimeter of a figure by using its side lengths, some of which are represented by letters, in an equation. They can solve the equation using inverse operations or predict and check. Then, they can interpret the results within the context of the problem.

Professional Development Videos

SE Interactive Student Edition

Personal Math Trainer
Math on the Spot Video
Animated Math Models
i Tools: Geometry

Daily Routines

Common Core

Problem of the Day 11.3

What is the value of b ?
$16-4+5=b$

17

Vocabulary

Fluency Builder $\begin{aligned} & \text { Common Core Fluency } \\ & \text { standard 3.NBTA.2 }\end{aligned}$

Materials number cubes (labeled 1-6)
Subtract 2-Digit Numbers Have students work in pairs. Give each pair of students two number cubes. Have one student roll the cubes and record a 2-digit number using the cubes. Then have the second student do the same. Both students should subtract the lesser number from the greater number. Have students compare their answers to check for accuracy.

Pages 108-109 in Strategies and Practice for Skills and Facts Fluency provide additional fluency support for this lesson.

(1) ENGAGE

with the Interactive Student Edition

Essential Question

How can you find the unknown length of a side in a plane figure when you know its perimeter?

Making Connections

Invite students to tell you what they know about quadrilaterals.
What is a quadrilateral? A quadrilateral is a four-sided figure with four straight sides. What are examples of quadrilaterals in your classroom? Possible answer: Top of desk, front of door, and shape of the cover of a textbook.

Learning Activity

What is the problem the students are trying to solve? Connect the story to the problem.

- What problem are you trying to solve? Find the length of the unknown sides of the speed-limit sign.
- What type of polygon is the speed-limit sign? a quadrilateral
- How many sides does the speed-limit sign have? 4
- What is the length of the left and right side of the speed-limit sign? Each side is 4 feet in length.

Literacy and Mathematics

Choose one or more of the following activities.

- Have students read the problem aloud with partners. Have students brainstorm what mathematical operations may be used to find the missing length.
- Have students review the concept of perimeter by explaining how they have found the perimeter in the past.

LESSON 11.3

(2) EXPLORE

 or with the same area and different perimeters.
Unlock the Problem

MP4 Model with mathematics.

- Explain how to write an equation for the perimeter. Possible answer: I can use the side lengths I know as four addends and the letter n, which stands for the unknown side length, as the fifth addend. I can make that sum equal to the perimeter, 27
- Explain why you used subtraction to solve the equation. Addition and subtraction are inverse operations, so I can use subtraction to undo addition.
- How can you check your answer? Possible answer: I can replace 8 for n in the equation and see if the addends add to 27 .

탠 Strategy:

Restate

Restate that the perimeter of a figure is the distance around the figure.

- Draw a rectangle on the board with the length labeled 3 feet and the width labeled 4 feet. Put your finger on a corner of the rectangle and follow along the side lengths.
- Have students say the length of the side aloud as you write it as an addend on the board. Then help students add to find the perimeter. 14 feet
- Have students rephrase the definition using this context.

Try This!

Remind students to include all side lengths when they find the perimeter of a figure.

MP2 Reason abstractly and

 quantitatively. To extend Try This!, ask students to assume they did not know the perimeter of the figure. Have students use reasoning to find the value of w. Possible answer: I know that $w+2$ must equal 5 by looking at the figure, so $w=3$.
MP8 Look for and express regularity in repeated reasoning.

- If you know the measurement of three sides of a rectangle, how do you find the fourth side? The fourth side has the same measurement as the side opposite it.

Name
Algebra • Find Unknown Side Lengths
Essential Question How can you find the unknown length of a side in a plane figure when you know its perimeter?

ALGEBRA
 Lesson 11.3

T Unlock the Problem

Chen has 27 feet of fencing to put around his garden. He has already used the lengths of fencing shown. How much fencing does he have left for the last side?

Find the unknown side length.
Write an equation for the perimeter.
Think: If I knew the length n, I would add all the side lengths to find the perimeter.

Add the lengths of the sides you know.
Think: Addition and subtraction are
inverse operations.
Problem Type: Put Together/ Take Apart • Addend Unknown
So, Chen has 8 feet of fencing left.
$5+3+\underline{7}+\underline{4}+n=27$

Try This!
The perimeter of the figure is 24 meters.
Find the unknown side length, w. See below.

Problem Type: Put Together/Take
Chapter 11637
Apart • Addend Unknown

(1) Example Find unknown side lengths of a rectangle.
Lauren has a rectangular blanket.
The perimeter is 28 feet. The width
of the blanket is 5 feet. What is the
length of the blanket?
See below.
Hint: A rectangle has two pairs of opposite sides that are equal in length.
You can predict the length and add to find the perimeter. If the perimeter is 28 feet, then that is the correct length

5 ft

Predict	Check	Does it check?
$I=7$ feet	$5+\underline{\mathbf{7}}+5+\underline{\mathbf{7}}=\underline{\mathbf{2 4}}$	Think: Perimeter is not 28 feet, so the length does not check.
$I=8$ feet	$5+\underline{\mathbf{8}}+5+\underline{\mathbf{8}}=\underline{\mathbf{2 6}}$	Think: Perimeter is not 28 feet, so the length does not check.
$I=9$ feet	$5+\underline{\mathbf{9}}+5+\underline{\mathbf{9}}=\underline{\mathbf{2 8}}$	Think: Perimeter is 28 feet, so the length is correct..

Problem Type: Put Together/
So, the length of the blanket is $\quad 9 \quad$ feet. Take Apart • Addend Unknown

Try This! Find unknown side lengths of a square.

The square has a perimeter of 20 inches. What is the length of each side of the square?

Think: A square has four sides that are equal in length.
You can multiply to find the perimeter

- Write a multiplication equation for the perimeter.
$4 \times \quad s=20$
- Use a multiplication fact you know to solve.
$4 \times 5=20$
So, the length of each side of the square is 5 inches.
Problem Type: Equal Groups 。 Group Size Unknown

Example

Students can test their predictions for the length of the blanket by replacing their predictions into the equation for perimeter.

- How can you make a good first prediction?

Possible answer: to make a good first prediction, I can use the diagram. The blanket looks a few feet taller than it is wide, so I can try using 7 feet as the first prediction.

- How do you know what to try next if your first prediction is not correct? Possible answer: The first prediction gives a perimeter of 24 feet, which is less than the actual perimeter, 28 feet. So, I should try a number greater than 7

Try This!

Have students complete the exercise. Point out that each side length is labeled with the same variable because their lengths are all equal.

- What does s stand for in the equation?
the length of one side of the square
- Explain why you can use multiplication to find the unknown side lengths of a square.
I can use multiplication because a square has four sides that are equal in length.
- Could you use addition to solve the problem? Explain. Yes, I could find $s+s+s+$ $s=20$, since the sum of the side lengths is equal to the perimeter.
If students use addition to solve, they will need to use the predict and check method in order to find the length of each side.

COMMON ERRORS

Error Students forget to add a side length when finding perimeter.

Example Students write the following equation to solve the first example of the lesson: $5+3+7+n=27$.

Springboard to Learning Tell students that in order to be sure they include each side length when finding perimeter, they may want to mark or circle the side lengths as they use them in their perimeter equations.

(3) EXPLAIN

Share and Show

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

d
 Quick Check

 a student misses the checked exercises
 Differentiate Instruction with
 Then
 - Reteach 11.3
 - Personal Math Trainer 3.MD.D. 8
 - Rtl Tier 1 Activity (online)

Use the checked exercises for Quick Check.

On Your Own

THINK SMARTER

Exercise 5 allows students to connect perimeter to multiplication. Discuss how the equation number of sides \times side length $=$ perimeter can be used for any figure with equal side lengths.
MP4 Model with mathematics. Extend Exercise 6 by asking students to identify which operation can be used to solve the problem and why. Possible answer: I used division to write an equation because the lengths of all four sides are equal.

Math

Talk
Use Math Talk to check students' understanding of the relationship between side length and perimeter.

- How do you find the perimeter of a square? Possible answer: Multiply a side length by 4.
- How are multiplication and division related?

They are opposite operations.

Name

1. Perimeter $=25$ centimeters

$n=7$ centimeters
(6) 2. Perimeter $=34$ meters

$j=10$ meters
On Your Own
Find the unknown side lengths.
2. Perimeter $=32$ centimeters

$k=5$ centimeters
3. THINK smamie Perimeter $=42$ feet

$g=7$ feet
 wants to put up a fence around her square garden. The garden has a perimeter of 28 meters. How long

7 meters; possible explanation: all four sides are equal
in length; $28 \div 4=7$.

Chapter 11•Lesson 3639

PROBLEM TYPE SITUATIONS

Addition and Subtraction

Put Together/Take Apart • Addend Unknown
Exercises: 7, 8, 9

Multiplication and Division

Equal Groups • Group Size Unknown
Exercises: 6, 8. 9

Unlock the Problem

7. GODEFPER Latesha wants to make a border with ribbon around a figure she made and sketched at the right. She will use 44 centimeters of ribbon for the border. What is the unknown side length?
a. What do you need to find?
the unknown side length

b. How will you use what you know about perimeter to help you solve the problem?

I know the sum of the lengths of all the sides is the perimeter, so I can add the sides I know and then write a related equation.
c. Write an equation to solve the problem.
$13+3+8+6+5+h=44$
8. THINK SMARER A rectangle has a perimeter of 34 inches. The left side is 6 inches long. What is the length of the top side?

11 inches
d. So, the length of side h is

9 centimeters.
9. THINKSMARIR + Michael has 40 feet of fencing to make a rectangular dog run for his dog, Buddy. One side of the run will be 5 feet long. For numbers 9a-9d, choose Yes or No to show what the length of another side will be.

9a. 20 feet
\bigcirc Yes No
9b. 15 feet

- Yes \quad No

9c. 10 feet

- Yes - No

9d. 8 feet

- Yes - No

(4) ELABORATE

Unlock the Problem
(comme MATHEMATICAL PRACTICES

GODEEPER

MP7 Look for and make use of structure. Exercise 7 walks students through each step of writing an equation to find an unknown side length. Be sure that students use the correct inverse operation when solving the equation.

Math on the Spot Video Tutor

Use this video to help students model and solve this type of Think Smarter problem.

Math on the Spot videos are in the Interactive Student Edition and at www.thinkcentral.com.

THINK SMARTER 4

Personal Math Trainer

Be sure to assign this problem to students in the Personal Math Trainer. It features an animation to help them model and answer the problem. This item assesses whether students can find an unknown side length of a rectangle when given its perimeter and the length of one side.

5 EVALUATE
 Formative Assessment

Essential Question
 Using the Language Objective

Reflect Have students work in teams to develop a concise explanation to answer the Essential Question.
How can you find the unknown length of a side in a plane figure when you know its perimeter? Possible answer: I can add the side lengths I know and subtract the sum from the perimeter to find the unknown side length.

Math Journal WRITE Math

Explain how to write and solve an equation to find an unknown side length of a rectangle when given the perimeter.

Lesson 11.3

Practice and Homework

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers.

Name
Find Unknown Side Lengths

Find the unknown side lengths.

1. Perimeter $=33$ centimeters

$5+8+7+4+x=33$
$24+x=33$
$x=9$
$x=$ \qquad centimeters

Problem Solving

3. Steven has a rectangular rug with a perimeter of 16 feet. The width of the rug is 5 feet. What is the length of the rug?
\qquad between linear and area measures.
4. Perimeter $=92$ inches

\qquad
5. Kerstin has a square tile. The perimeter of the tile is 32 inches. What is the length of each side of the tile?
6. WRITE Math Explain how to write and solve an equation to find an unknown side length of a rectangle when given the perimeter.
Check students' work.

Cross-Curricular

- Memory cards are used in many portable electronic devices, like cell phones and digital cameras. Memory cards store information so that data, such as photos, can be transferred from a device to a computer.
- In devices like digital cameras and cell phones, memory cards are often small and rectangular in shape.
- A rectangular memory card has a perimeter of 38 millimeters and a length of 9 millimeters. What is the width of the memory card? 10 millimeters

SOCIAL STUDIES

- The National Mall is a park in Washington, D.C. Famous monuments and buildings like the Lincoln Memorial, the National Museum of Natural History, and the Washington Monument are in the park.
- The Reflecting Pool, located at the foot of the Lincoln Memorial, is rectangular in shape. A scale model of the pool has a perimeter of 26 inches and a length of 12 inches. What is the width of the model? 1 inch

Lesson Check ${ }_{\text {(3.mD.D. } 8)}$

1. Jesse is putting a ribbon around a square frame. He uses 24 inches of ribbon. How long is each side of the frame?
2. Davia draws a shape with 5 sides. Two sides are each 5 inches long. Two other sides are each 4 inches long. The perimeter of the shape is 27 inches. What is the length of the fifth side?

Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.

Understand Area

focus conerence pigor LESSON AT A GLANCE

FCR Focus:

Common Core State Standards
3.MD.C. 5 Recognize area as an attribute of plane figures and understand concepts of area measurement.
3.MD.C.5a A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.

Also 3.MD.C.5b, 3.MD.C.6, 3.MD.D.8
MATHEMATICAL PRACTICES (See Mathematical Practices in GO Math! in the Planning Guide for full text.)
MP2 Reason abstractly and quantitatively. MP4 Model with mathematics.
MP5 Use appropriate tools strategically. MP6 Attend to precision.
F CR Coherence:
Standards Across the Grades
Before Grade 3 After
2.G.A. 2 3.MD.C. 5 4.MD.A. 3 3.MD.C.5a

FCR Rigor:
Level 1: Understand Concepts \qquad Share and Show (Checked Items) Level 2: Procedural Skills and Fluency On Your Own, Practice and Homework
Level 3: Applications. \qquad Think Smarter and Go Deeper

Learning Objective

Explore perimeter and area as attributes of polygons.

Language Objective

Students complete a 2-column chart to show how finding the area of a figure differs from finding the perimeter of a figure.

Materials

MathBoard, geoboard, rubber bands

[^0]
About the Math

Professional Development

Progress to Algebra Why Teach This

Area is a mathematical topic that has connected geometry and measurement since ancient times. In the time of the pharaohs, Egyptian surveyors knew how to measure plots of land and calculate their areas. These area measurements assured farmers that they could locate their plots every year after the Nile River flooded and also formed the basis for the amount of grain that a farmer had to pay in taxes.
This lesson introduces the concept of area and helps students establish the similarities and differences between area and perimeter. This lesson also provides the foundation for which students will build their knowledge of area. In later courses, they will use formulas to find areas of shapes.

Professional Development Videos

Interactive Student Edition

Personal Math Trainer

Math on the Spot Video
Animated Math Models
iT iTools: Geometry
MM нм Hega Math

Daily Routines

Common Core

Problem of the Day 11.4

Kevin meets his friend for the movies at twenty-five minutes after seven. What is another way to show this time?

Vocabulary area, square unit, unit square

Fluency Builder Common Core Fluency

Practice multiplication facts including finding the missing factor. Write problems similar to the following on the board and have students fill in the missing number.

$$
\begin{aligned}
& 3 \times 4=? \\
& 7 \times 2=? \\
& 4 \times 8=? \\
& 2 \times ?=18 \\
& 3 \times ?=21 \\
& 5 \times ?=30 \\
& ? \times 8=24 \\
& ? \times 6=36 \\
& ? \times 3=27
\end{aligned}
$$

Pages 62-63 in Strategies and Practice for Skills and Facts Fluency provide additional fluency support for this lesson.

1) ENGAGE

with the Interactive Student Edition

Essential Question

How is finding the area of a figure different from finding the perimeter of a figure?

Making Connections

Invite students to think about squares and perimeter.

- How many sides does a square have? 4 How do you find the perimeter of a square? Find the total length of the four sides Have you ever seen a floor covered in square tiles? yes Did the tiles overlap? no How could you describe the size of a room that has a square-tile floor? I could count the number of square tiles that are on the floor.

Learning Activity

What is the problem the students are trying to solve? Connect the story to the problem.
Ask the following questions:

- What are you asked to find? the area inside the fenced vegetable garden
- Describe the shape the fence makes. a rectangle

Literacy and Mathematics

View the lesson opener with the students. Then, choose one or more of the following activities:

- Have students make a chart to list real-world examples of perimeter and area. For example, fencing around a yard would be perimeter and grass covering a yard would be area. Have students share their examples with the class.
- Have students summarize the difference between perimeter and area.

LESSON 11.4

2 EXPLORE

Unlock the Problem

CONNECT

MP6 Attend to precision. Discuss real-world examples of area such as using square feet to describe the area of a room.

- How is perimeter similar to area? Both describe figures and are measurements.
- How is perimeter different from area? Perimeter is the distance around a figure and is measured in linear units. Area is the measure of the number of unit squares needed to cover a flat surface and is measured in square units.

Activity

Some students may make half squares by making a diagonal with their rubber bands. If they do this, explain that two half squares equal one whole square. However, if students do not make a half square, do not mention this concept.
Explain to students that the area of the figure they create is described by the space inside the rubber band, not by the number of pegs or the distance between them.

- Explain the difference between using the geoboard to find area and using it to find perimeter. To find area, I count the number of unit squares inside a figure, using the space inside the rubber band. To find perimeter, I count the number of units around the outside of the figure, using the distance between the pegs.

큰
 Strategy:

Illustrate Understanding

To show their understanding of the term area, have students draw a rectangular shape on dot paper.

- Model a rectangle for students.
- Have students shade as they count unit squares.
- What does the total number of unit squares represent? the area of the shape
- Have students count the total number of unit squares in the shape that they drew in order to find its area. Students say, There are \qquad unit squares in this shape.

Name

Lesson 11.4

Understand Area

Essential Question How is finding the area of a figure different from inding the perimeter of a figure?

Measurement and Data3.MD.C.5, 3.MD.C.5a Also
mathematical practices MP2, MP3, MP5, MP8

TUnlock the Problem

CONNECT You learned that perimeter is the distance around a figure. It is measured in linear units, or units that are used to measure the distance between two points.
 Area is the measure of the number of unit squares needed to cover a flat surface. A unit square is a square with a side length

 of 1 unit. It has an area of 1 square unit.

1 unit +1 unit +1 unit + 1 unit $=4$ units

1 square unit

Math Idea

You can count the number of units on each side of a figure to find its perimeter. You can count the number of unit squares inside a figure to find its area in square units.
(1) Activity Materials $■$ geoboard $■$ rubber bands Possible drawings are shown.
(A) Use your geoboard to form a figure made from 2 unit squares. Record the figure on this dot paper.

What is the area of this figure?
Area $=\underline{2}$ square units
(B) Change the rubber band so that the figure is made from 3 unit squares. Record the figure on this dot paper.

What is the area of this figure?
Area $=\ldots$ square units
mathematical practices 3
Compare Representations For B, did your figure look like your classmate's figure?

Chapter 11643

Try This! Draw three different figures that are each made from 4 unit squares. Find the area of each figure. Possible drawings are shown.

- How are the figures the same? How are the figures different?

Possible answer: they have the same area. Their shapes look different.

Share and Show MATH
 1. Shade each unit square in the figure shown. Count the unit squares to find the area
 Area $=\boxed{6}$ square units

Count to find the area of the figure.

Write area or perimeter for the situation.
5. buying a rug for a room
66. putting a fence around a garden

Situations will vary.
644
area
perimeter

,
Generalize What are other situations where

Advanced Learners Logical Mathematical

Materials 1-Centimeter Grid Paper (see eTeacher Resources)

- Display the two figures below. Have the students find the perimeter of each figure. figure $A: 18$ units, figure $B: 22$ units
- Challenge students to find the area of each figure by using multiplication and by breaking them into two rectangles.

Try This!

Have students complete the exercise. Explain there will be a variety of correct drawings.

MP2 Reason abstractly and quantitatively.

- How can two different figures have the same area? Possible answer: because the measure of the number of unit squares covering a figure is its area, you can rearrange the unit squares used in one figure to make a different figure and the area will not change.

3 EXPLAIN

Share and Show

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.
Use the checked exercises for Quick Check.

Math
Talk
Use Math Talk to focus on when to use area and perimeter. Remind students that perimeter is the distance around a figure and area is the measure of the number of unit squares needed to cover a figure.

- What are other situations when you would need to find perimeter? Situations will vary.

COMMON ERRORS

Error Students find the perimeter instead of the area.
Example Students find that the area of the figure in Exercise 2 is 12 units.

Springboard to Learning Tell students that to find area, they should be counting unit squares, not side lengths of squares.

On Your Own

If students complete the checked exercises correctly, they may continue with the On Your Own section. Allow students time to complete Exercises 7-9 on their own. If students are having difficulty finding the correct answer, have them draw lines between the dots on the dot paper to form the unit squares. Then have them count to find the area.

MP2 Reason abstractly and

quantitatively. Extend Exercises 13-16
by asking students to write two different situations, one for perimeter and one for area. Answers will vary.

GODEEPER

Exercise 17 is a multi-step problem. Students first find the total number of tiles (the area) and then multiply by $\$ 2$ (the cost of each tile) to find the total cost.

Name

On Your Own

Count to find the area of the figure.

Write area or perimeter for the situation.
13. painting a wall
14. covering a patio with tiles
\qquad
15. putting a wallpaper border around a room
perimeter
17. GODEFPER Nicole's mother put tiles on a section of their kitchen floor. The section included 5 rows with 4 tiles in each row. Each tile cost $\$ 2$. How much money did Nicole's mother spend on the tiles?
$\$ 40$

PROBLEM TYPE SITUATIONS

Addition and Subtraction

Put Together/Take Apart • Total Unknown

Exercises: 18, 21

Multiplication and Division

Equal Groups • Unknown Product

Exercise: 17

Arrays • Unknown Product

Exercise: 17

Problem Solving • Applications
Juan is building an enclosure for his small dog,
Eli. Use the diagram for 18-19.

will use grass enclosure. How much grass sod does Juan need?

25 square units
20.
 Draw two different figures, each with an area of 10 square units. Possible drawings are shown.

21. THINKSMAAEER What is the perimeter and area of this figure? Explain how you found the answer.

Perimeter 24 units
Area 21 square units
Possible explanation: For perimeter, I counted the unit
edges around the figure: $6+6+12=24$. For area, I
counted the unit squares inside the figure:
$1+2+3+4+5+6=21$.

646

DIFFERENTIATED INSTRUCTION

Differentiated Centers Kit

Activities
 Perimeter Parade

Students complete orange Activity Card 10 by finding the perimeter of pattern blocks.

Literature

James' Frames

Students read about using perimeter to find how much wood is needed to make picture frames.

(4) ELABORATE

Problem Solving • Applications (emo Mathematical Practic:s

MP5 Use appropriate tools strategically.
Exercises 18-19 highlight the differences in situations when students would need to use perimeter and when they would need to use area.

THINK SMARTER

Exercise 20 requires students to use higher order thinking skills to draw two figures that have the same area.

Math on the Spot
 Video Tutor

Use this video to help students model and solve this type of Think Smarter problem.

Math on the Spot videos are in the Interactive Student Edition and at www.thinkcentral.com.

THINK SMARTER

Students must be able to count units to find the perimeter and area of an irregular figure on dot paper. Students who give incorrect answers likely made a counting error. Some students might reverse the answers if they are unclear about the measures of perimeter and area.

5 EVALUATE
 Formative Assessment

Essential Question

Using the Language Objective

Reflect Have students complete a 2-column chart to answer the Essential Question.
How is finding the area of a figure different from finding the perimeter of a figure?
Possible answer: to find area, I find the number of unit squares needed to cover the figure. To find perimeter, I find the number of units around the figure.

Math Journal WRITE Math

Draw a rectangle using dot paper. Find the area, and explain how you found your answer.

Practice and Homework

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers.

Understand Area

Count to find the area for the shape.

Area $=\underline{6}$ square units
Write area or perimeter for each situation.
4. carpeting a floor

Use the diagram for 6-7.
6. Roberto is building a platform for his model railroad. What is the area of the platform?

12 square units
7. Roberto will put a border around the edges of the platform. How much border will he need?
\qquad
8. WRITE Math Draw a rectangle using dot paper. Find the area, and explain how you found your answer.
Check students' work.

Lesson 11.4

Common COMMON CORE STANDARDS-3.MD.C.5, 3.MD.C.5a Geometric measurement:

 multiplication and to addition.

Area $=\boxed{5}$ square units
5. fencing a garden
\qquad

Chapter 11

Extend the Math

Find Area Using Half Unit Squares

Investigate Students have found the area of shapes using whole-unit squares. Now they will use whole-unit squares and half-unit squares to find the area of a shape.

- Count the number of whole unit squares in the shape.

There are 12 whole-unit squares.

- Count the number of half unit squares in the shape.

There are 4 half-unit squares.

- How many half-unit squares make a wholeunit square? 2
- What is the area of the shape? Explain how you found your answer. 14 square units; There are 12 whole-unit squares. The 4 half-unit squares make 2 whole-unit squares, so the area is $12+2=14$ unit squares.

Summarize In order to find the area of a shape that contains both whole and half-unit squares, students can count the number of whole-unit squares, then the number of half-unit squares. Student can then convert each set of 2 half-unit squares to one whole-unit square and add to find the area.

Lesson Check ${ }_{\text {(3.MD.c. . .3.MD.C.5) }}$

1. Josh used rubber bands to make the shape below on his geoboard. What is the area of the shape?

3 square units
2. Wilma drew the shape below on dot paper. What is the area of the shape she drew?
 5 square units

Spiral Review (3.OA.c.7, з.N.A.1, з.MD.A.1, з.MD.A.2)

3. Leonardo knows it is 42 days until summer break. How many weeks is it until Leonardo's summer break? (Hint: There are 7 days in a week.)

6 weeks
5. Wanda is eating breakfast at fifteen minutes before eight. What time is this? Use A.m. or P.M.
4. Nan cut a submarine sandwich into 4 equal parts and ate one part. What fraction represents the part of the sandwich Nan ate?

Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.

Measure Area

focus conerence pigor LESSON AT A GLANCE

FCR Focus:

Common Core State Standards
3.MD.C.5b A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.
3.MD.C. 6 Measure areas by counting unit squares (square cm , square m , square in, square ft , and improvised units).

Also 3.MD.C.5, 3.MD.C.5a, 3.MD.C.7, 3.MD.C.7a
MATHEMATICAL PRACTICES (See Mathematical Practices in GO Math! in the Planning Guide for full text.)
MP2 Reason abstractly and quantitatively. MP4 Model with mathematics.
MP5 Use appropriate tools strategically. MP6 Attend to precision.
F CR Coherence:
Standards Across the Grades
Before Grade 3 After
2.G.A. 2 3.MD.C.5b 4.MD.A. 3 3.MD.C. 6

FCR Rigor:
Level 1: Understand Concepts \qquad Share and Show (Checked Items)
Level 2: Procedural Skills and Fluency On Your Own, Practice and Homework
Level 3: Applications \qquad Think Smarter and Go Deeper

Learning Objective

Estimate and measure area of plane figures by counting unit squares.

Language Objective

Students rephrase the directions on how to find the area of a plane figure.

Materials

MathBoard, scissors, green and blue paper, 1-Inch Grid Paper (see eTeacher Resources)

F C R For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.

About the Math

Professional Development

Progress to Algebra

Using concrete tools that students are familiar with allows them to approach new concepts with a degree of comfort. It also provides them with a strategy to fall back on when they extend the concepts in future lessons and courses. When students move on to finding areas of figures using formulas, they know that they have square tiles to use as a tool should they need them.
In this lesson, students find the areas of figures by tiling them. Students see that in order to tile correctly, they should not leave any gaps or have any tiles overlap. When there are gaps, the space between the tiles is not measured. When the tiles overlap, the space where the tiles overlap is measured twice. Students also learn that the smaller the unit square, the more unit squares will be needed to cover the same area.

Professional Development Videos

Using Square Tiles

The side length of 1 square-inch tile is 1 inch. Students cover flat surfaces with square tiles and count in order to find areas of figures.

There are 2 square tiles, so the area of this rectangle is 2 square inches.

Daily Routines

Common Core

Problem of the Day 11.5
Write four multiplication expressions that are equal to 24 . Use only two factors in each expression. Possible answers:
$4 \times 6,8 \times 3,2 \times 12,1 \times 24,6 \times 4,3 \times 8$,

$$
12 \times 2,24 \times 1
$$

Vocabulary

1) ENGAGE

with the Interactive Student Edition

Essential Question

How can you find the area of a plane figure?

Making Connections

Invite students to tell you what they know about figures.
If one side of a square measures 1 cm , what does each other side measure? 1 cm If two squares are set side by side, what shape is formed? A rectangle If the two squares that are set side by side have side lengths that are 1, what are the dimensions of the rectangle formed? $1 \mathrm{~cm}, 2 \mathrm{~cm}, 1 \mathrm{~cm}, 2 \mathrm{~cm}$

Learning Activity

What is the problem the students are trying to solve? Connect the story to the problem.

- How is area measured? in unit squares
- What is the problem asking for? the area of each side of the hot air balloon basket
- How many sides of the basket are there? 4

Literacy and Mathematics
 Choose one or more of the following activities.

- Have students draw the balloon basket, then color in a pattern.
- Have students restate the problem in their own words.
- Have students create two more word problems that deal with finding the area of a figure.

LESSON 11.5

(2) EXPLORE

Progress to Algebra

Unlock the Problem

To introduce the lesson, have students watch the Real World Video, Solar Energy Voltaics. How does the area of a solar panel relate to how much power it will put out?

Activity 1

MP5 Use appropriate tools strategically.
Use paper square tiles when completing the activity because square plastic tiles will not work when demonstrating overlaps.

- Why is it important that there are no gaps when you measure area using tiles? If there are gaps between tiles when I measure area that means there is space in the shape that I haven't measured.
For Part B, students should place tiles so that the right side of the tiles line up against the dashed lines. The right side of the last tile should line up with the right side of the rectangle.
- Did you measure the space where there are overlaps more than once? Yes
- Why is it important that no tiles overlap when you measure area using tiles? If the tiles are overlapping when I am measuring area, then that means I have measured some of the area more than once.
For Part C, make sure students notice that the tiles line up exactly in the rectangle, with the edges just touching.

ㅌㄴㄴ Strategy:

Restate

Restate that the area is the number of unit squares needed to cover a flat surface.

- Draw and label a square inch and square centimeter on the board. Have emerging level students listen and point to the square as you call out square inch or square centimeter.

MP2 Reason abstractly and quantitatively.

- How could you use what you've learned to draw a new figure with an area of 10 square inches? Possible answer: I could put 10 tiles together and make sure there were no gaps or overlaps.

Name
Measure Area
Essential Question How can you find the area of a plane figure?

P Unlock the Problem

Jaime is measuring the area of the rectangles with 1-inch square tiles.

Activity 1 Materials $■ 1$-inch grid paper $■$ scissors

Cut out eight 1 -inch squares. Use the dashed lines as guides to place tiles for $A-C$.
(A) Place 4 tiles on Rectangle A.

- Are there any gaps? Yes
- Are there any overlaps? No
- Jaime says that the area is 4 square inches. Is Jaime's measurement correct? No

So, when you measure area, there can be no space between the tiles, or no gaps.

B Place 8 tiles on Rectangle B.

- Are there any gaps? No
- Are there any overlaps? Yes
- Jaime says that the area is 8 square inches. Is Jaime's measurement correct? No

So, when you measure the area, the tiles cannot overlap.
C Place 6 tiles on Rectangle C.

- Are there any gaps? No
- Are there any overlaps? No
- Jaime says that the area is 6 square inches. Is Jaime's measurement correct? Yes

So, the area of the rectangles is
6 square inches.

Lesson 11.5

$\begin{array}{cl}\text { Common } & \text { Measurement and Data- } \\ \text { Core } & \text { 3.MD.C.5b, 3.MD.C. } 6 \text { Also 3.MD.C. } 5\end{array}$ 3.MD.C.5b, 3.MD.C. 6 Also 3.MD.C
3.MD.C.5a, 3.MD.C.7, 3.MD.C.7a MATHEMATICAL PRACTICES MP2, MP4, MP7

Rectangle A

Rectangle B

Rectangle C

Activity 2 Materials ${ }^{\text {n }}$ green and blue paper $■$ scissors

ERROR Alert
Be sure that there are no gaps or overlaps when you use square tiles to find area.

So, the area is $\quad 17$ square centimeters.

Advanced Learners (D) Visalal /spacial

- Draw a figure that involves half-unit squares like the one below.
- Tell students that a triangle is one half of a unit square and that two triangles form one unit square.
- Have students find the area. The area is 7 square units.
- Have students use grid paper to draw a figure that involves half-unit squares. Have students exchange drawings with a classmate in order to find the area.

Activity 2

Have students read through the activity.

- In Steps 1 and 2, why do you think it is important to estimate the number of tiles?
I can use my estimate to check my answer.
- Based on your estimates, do you think you will need more blue tiles or more green tiles? Why? I estimated that I will need more green tiles because a green tile is smaller than a blue tile and will cover less space inside the rectangle.
This activity will provide a foundation for students to understand that you will need more of a smaller unit than a larger unit in order to cover the same area.
- In Steps 5 and 6, did you use more blue tiles or green tiles to find the area? Is this what you expected? Explain. I used more green tiles. Possible explanation: yes; it matched my estimate. I knew it would take more green tiles to find the area because they are smaller.

Math

Talk find area matters

Try This!

MP6 Attend to precision. It is important for students to understand the sizes of a square inch and a square centimeter, as these are units of measure that they will encounter frequently.
Provide students with a square inch tile and a square centimeter tile. Have them trace along the sides of each while stating the side length. Form rectangles from 2 square-inch tiles or 2 square-centimeter tiles. Then have students state the area of each. It may be helpful for students to find benchmarks in the classroom that are about the size of a square inch or a square centimeter.

COMMON ERRORS

Error Students count the number of unit squares incorrectly.
Example Students may find that the area of the figure in Try This! is 21 square centimeters.

Springboard to Learning Tell students that when they count the unit squares, it may be helpful to number the squares as they count them or to place a check in each square.

(3) EXPLAIN

Share and Show

The first problem connects to the learning model. Have students use the MathBoard to explain their thinking. Use the checked exercises for Quick Check.

(Quick Check
 R RTI
 If
 a student misses the checked exercises
 Then
 Differentiate Instruction with
 - Reteach 11.5
 - Personal Math Trainer 3.MD.C.5b, 3.MD.C. 6
 - Rtl Tier 1 Activity (online)

Math

Talk
Use Math Talk to focus on students' understanding of finding area.

- Why is it important to include a label with an area measurement? Possible answer: The size of the unit used to measure can vary. The label lets you know what size unit was used to measure the area.

On Your Own

If students complete the checked exercises correctly, they may continue with the On Your Own section.
Allow students time to complete Exercises 4 and 5 on their own. If students are having difficulty finding the correct answer, make sure that they are not missing or double-counting unit squares.
MP6 Attend to precision. Have students consider finding the area of the board using square-inch tiles. Ask students if they would use more or fewer unit squares if they were measuring in square feet. fewer; because feet are a greater unit of measurement than inches

Name

1. Count to find the area of the figure. Each unit square is 1 square centimeter.
Think: Are there any gaps? Are there any overlaps?
There are 10 unit squares in the figure.
So, the area is 10 square centimeters.
Count to find the area of the figure.
Each unit square is 1 square centimeter.
© 2.

Area $=20$ square centimeters

Use Reasoning How can you use square centimeters to find the area of different figures?

Possible explanation: you can count the number of square centimeters to find the area of each figure.

Area $=10$ square centimeters

On Your Own

Count to find the area of the figure. Each unit square is 1 square inch.
© Houghton Miffilin Harcoutrt Publisting Company

Area $=\boxed{6}$ square inches
Chapter 11 •Lesson 5

PROBLEM TYPE SITUATIONS

Addition and Subtraction

Put Together/Take Apart • Addend Unknown

Exercise: 9
Compare • Difference Unknown
Exercise: 7

Problem Solving • Applications
6. पमी दictai 4) Use a Diagram Danny is placing tiles on the floor of an office lobby. Each tile is 1 square meter. The diagram shows the lobby. What is the area of the lobby?

12 square meters
7. GODEFPRE Angie is painting a space shuttle mural on a wall. Each section is one square foot. The diagram shows the unfinished mural. How many more square feet has Angie painted than NOT painted on her mural?

14 more square feet Rectangle A
8.
(THINKSMARIE) You measure the area of a table top with blue unit squares and green unit squares. Which unit square will give you a greater number of square units for area? Explain.
the green unit square; possible explanation:
the blue square units are larger than the green
square units, so it takes fewer blue square units
than green square units to cover the figure.
9. THINK SMARTE How many squares need to be added to this figure so that it has the same area as a square with a side length of 5 units?

12 squares

652

DIFFERENTIATED INSTRUCTION INDEPENDENT ACTIVITIES

Differentiated Centers Kit

Activities

Figure It Out

Students complete blue Activity Card 18 by identifying two-dimensional figures by their attributes.

Literature
The Class Party

Students read about using perimeter to find how much wood is needed to make picture frames.

(4) ELABORATE

Problem Solving • Applications (8)m MATHEMATCAL Practices

MP4 Model with mathematics. Exercises 6 and 7 ask students to find area using square meters and square feet. You might want to discuss the relative sizes of these units to develop students' understanding of their sizes.

THINK SMARTER

Exercise 8 checks students' understanding of unit size when measuring area. Suggest students look at the blue and green tiles to help with the comparison.

Math on the Spot
 Video Tutor

Use this video to help students model and solve this type of Think Smarter problem.

Math on the Spot videos are in the Interactive DICITAL Student Edition and at www.thinkcentral.com.

THINK SMARTER

Students should recognize that this problem requires more than one step. Students first will need to find the area of a square with a side length of 5 units. Then they should count unit squares to find the area of the given figure and subtract to find the number of unit squares needed. Students who give answers of 13 or 25 likely did not understand the problem and gave either the area of the figure or the area of the square.

(5) EVALUATE $\underset{\substack{\text { Assessmment }}}{\substack{\text { Formitiv }}}$

Essential Question
 Using the Language Objective

Reflect Have students rephrase the directions to answer the Essential Question.
How can you find the area of a plane figure?
I can estimate the area by guessing about how many square units are needed to cover the figure. I can find the area by using tiles, making sure there are no gaps or overlaps, and counting the number of square units covering the figure.

Math Journal WRITE Math

Explain how to find the area of a figure using square tiles.

Lesson 11.5

Practice and Homework

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers.

Measure Area

Count to find the area of the shape. Each unit square is 1 square centimeter.
1.

Area $=\underline{14}$ square centimeters
3.

Area $=\underline{11}$ square centimeters

Problem Solving

Alan is painting his deck gray. Use the diagram at the right for 5 . Each unit square is 1 square meter.
5. What is the area of the deck that Alan has already painted gray?
\qquad
16 square meters
6. WRITE Math Explain how to find the area of a figure using square tiles.
Possible explanation: to find the area, just count the number of square tiles. The number
of tiles is the area of the figure.

Lesson Check ${ }_{\text {(3, мо.с.с5. } 3 \text {......6) }}$

Each unit square in the diagram is

 1 square foot.1. How many square feet are shaded?

23 square feet
2. What is the area that has NOT been shaded?
\qquad
19 square feet

3. Sonya buys 6 packages of rolls. There are 6 rolls in each package. How many rolls does Sonya buy?

36 rolls
4. Charlie mixed 6 liters of juice with 2 liters of soda to make fruit punch. How many liters of fruit punch did Charlie make?
\qquad
\qquad
5. What fraction of the circle is shaded?

6. Use the model on the right to name a fraction that is equivalent to $\frac{1}{2}$.
$\frac{2}{3}$

654

Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.

Use Area Models

focus conerence ricor LESSON AT A CLANCE

FCR Focus:

Common Core State Standards3.MD.C. 7 Relate area to the operations of multiplication and addition.
3.MD.C.7a Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
Also 3.MD.C.5, 3.MD.C.5a, 3.MD.C.5b, 3.MD.C.6, 3.MD.C.7b, 3.OA.A.3, 3.OA.C.7, 3.NBT.A. 2

MATHEMATICAL PRACTICES (See Mathematical Practices in GO Math! in the Planning Guide for full text.) MP1 Make sense of problems and persevere in solving them. MP3 Construct viable arguments and critique the reasoning of others. MP6 Attend to precision. MP8 Look for and express regularity in repeated reasoning.
F CR Coherence:
Standards Across the Grades
Before Grade 3 After
2.G.A. 2 3.MD.C. 7 4.MD.A. 3 3.MD.C.7a

FCR Rigor:
Level 1: Understand Concepts \qquad Share and Show (Checked Items) Level 2: Procedural Skills and Fluency On Your Own, Practice and Homework Level 3: Applications \qquad Think Smarter and Go Deeper

Learning Objective

Relate area to addition and multiplication by using area models.

Language Objective

Student pairs discuss and develop a clear reason to explain why you can multiply to find the area of a rectangle.

Materials

MathBoard

F C R For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.

About the Math

Progress to Algebra
 Why Teach This

This is the first lesson in which students multiply to find the area of a figure. In Chapter 3, students learned how to find total amounts first by counting, then by using repeated addition, and last by multiplying. They will take this same approach to finding the area of rectangles.

This lesson provides the foundation for students to learn how to multiply in order to find areas of a variety of shapes. It also lays the groundwork for finding areas using formulas, which students will learn in later courses.

Interactive Student Edition
Personal Math Trainer

Math on the Spot Video
iT iTools: Geometry
MM нмн Mega Math

Daily Routines

Common Core

Problem of the Day 11.6

There are some new cars and motorcycles parked in front of a car dealership. There are a total of 20 wheels. If there are 4 cars, how many motorcycles are there?

2 motorcycles

Vocabulary

C(D) Interactive Student Edition

```
DIGITAL

Materials Digit Cards (see eTeacher Resources)
Add 2-Digit and 3-Digit Numbers Have students work in pairs. Give each pair of students a set of digit cards, but exclude the 0 card. First, have both students draw two cards to create a 2-digit number. Students should add the 2-digit numbers formed by the cards. Then, have one student draw three cards and the other draw two cards. Add the 2- and 3-digit numbers formed by the cards. Last, have each student draw three cards and add the 3 -digit numbers formed. Be sure students check each other's work.

Pages 106-107 in Strategies and Practice for Skills and Facts Fluency provide additional fluency support for this lesson.

\section*{1) ENGAGE}

\section*{with the Interactive Student Edition}

\section*{Essential Question}

Why can you multiply to find the area of a rectangle?

\section*{Making Connections}

Invite students to tell you what they know about painting a space.
Ask students if they have ever helped paint an area or room. For students who answer yes, ask what they painted and about how much paint they used.

\section*{Learning Activity}

What is the problem the students are trying to solve? Connect the story to the problem.
- How long is the parking space? 7 yards
- How wide is the parking space? 3 yards
- What is the problem asking you to find? the area of the parking space

\section*{Literacy and Mathematics \\ Choose one or more of the following activities.}
- Point out to students that equa- in equation is similar to the word equal. Have students explain how the words equal and equation are related.
- Have students evaluate whether or not they think the problem provides enough information to be solved, explaining why.


\section*{LESSON 11.6}

\section*{(2) EXPLORE}

\section*{Unlock the Problem \\ (cian Mathematical Practices}

Have students read the problem.

\section*{One Way}

MP5 Use appropriate tools strategically. Remind students that they must count each unit square exactly once in order to find the correct area.

\section*{Other Ways}

\section*{MP4 Model with mathematics.}
- What do you notice about the number of unit squares in each row of Cristina's garden? The same number of unit squares are in each row.
- How can you use addition to find a total amount for a problem involving equal groups? I can use repeated addition to add equal groups.
- How is this shape like an array? The shape has rows with the same number of unit squares in each row.
- How can you use multiplication to find the total number of unit squares in an array?
I can multiply the number of unit squares in each row by the number of rows.

\section*{Math}

Talk
Use Math Talk to deepen students' understandings of when all 3 methods can be used to find the area.

\section*{캔 Strategy:}

\section*{Identify Relationships}

Students build understanding of how to measure area by connecting it to drawing an array for multiplication.
- Have students draw a rectangle on a sheet of grid paper and ask them to discuss with a partner how this rectangle looks like an array for multiplication.
- Model how to count, shade and label rows.
- Have students shade unit squares in each row, one by one. Ask how many unit squares there are in each row.
- Have students find the area of their rectangles. Ask how they found the area. Answers will vary.

Name

\section*{Lesson 11.6}

Use Area Models
Essential Question Why can you multiply to find the area of a rectangle?

\section*{TUnlock the Problem}

Cristina has a garden that is shaped like therectangle below. Each unit square represents 1 square meter. What is the area of her garden?

\section*{One Way count unit squares.}

Count the number of unit squares in all.
There are \(\quad 18\) unit squares.
So, the area is 18 square meters

Problem Type: Put Together/Take Apart • Total Unknown
A Use repeated addition.
Count the number of rows. Count the number of unit squares in each row.

3 rows of \(\quad 6=\square\)


6 unit squares
6 unit squares 6 unit squares

Write an addition equation.
\(6+6\) \(=18\)

So, the area is 18 square meters.

\section*{(B) Use multiplication. Problem Type: Area}
rows. Count the
number of unit squares in each row.
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 7 & 8 & 9 & 10 & 11 & 12 \\
\hline 13 & 14 & 15 & 16 & 17 & 18 \\
\hline
\end{tabular}
- Circle the shape of the garden.
 3.MD.C.5b MATHEMATICAL PRACTICES MP1, MP4, MP5, MP6

3 rows of \(\quad 6=\square\)
\(\qquad\)
This rectangle is like an array. How do you find the total number of squares in an array?

You can multiply the number in each row by the number of rows.
Write a multiplication equation.
So, the area is 18 square meters.
Possible explanation: if the figure is broken into unit squares, then you can use all 3 methods. If the itgures are not oroken into unit squares, then you can not use the method count unit squares. 3 rows

Chapter 11655


Try This! Problem Type: Area • Unknown Product

\section*{Find the area of the figure.}

Each unit square is 1 square foot.
Think: There are 4 rows of 10 unit squares.
\[
4 \times \underline{10}=40
\]


So, the area is \(\quad 40\) square feet.


\section*{MATH}
1. Look at the figure.

3 rows of \(4=\square\)
Add. \(4+4+42\)
Multiply. \(3 \times \underline{4}=\underline{12}\)
What is the area of the figure?
12 square units
Find the area of the figure.
Each unit square is \(\mathbf{1}\) square foot.
2.


14 square feet
Find the area of the figure.
Each unit square is 1 square meter.
4.


32 square meters


Compare Which method do you prefer using?

Possible explanation: I prefer using multiplication because it is quicker than counting or using repeated addition.
© 3.


15 square feet

656

\section*{Advanced Learners \\ Visual / Spatial Individuals}

Materials ruler or measuring tape
- Have students estimate the area of several objects in the classroom using two different units of measurement. Suggest the following:
computer screen: square inches, square centimeters; doorway: square feet, square meters; classroom floor: square yards, square meters
- Have students measure the object to the nearest whole unit using a ruler or measuring tape. Then have students find the area using multiplication.
- Have students repeat the activity using an object of their own.

\section*{Try This!}
- Why can you use multiplication to find the area of a rectangle? I can use multiplication because rectangles covered by unit squares are like arrays. They have rows of unit squares with the same number of unit squares in each row.
- Can you use multiplication to find the area of any figure? Explain. No; other figures may not have equal rows.
If students suggest finding the area of figures that are not rectangles by breaking them apart, tell them this method is used in later lessons.

Math
Use the Math Talk to discuss the different methods.
- What is a benefit of knowing more than one way to find the area? Possible answer: You can use one method to find the area and another to check your answer

\section*{(3) EXPLAIN}

\section*{Share and Show}


The first problem connects to the learning model.
Use the checked exercises for Quick Check.


\section*{COMMON ERRORS}

Error Students count the number of unit squares in each row incorrectly.

Example Students may say the area of the figure in Try This! is 36 square feet.

Springboard to Learning Tell students that when they count the unit squares, it may be helpful to double-check the number of unit squares that they counted.

\section*{On Your Own}

If students complete the checked exercises correctly, they may continue with the On Your Own section.
Allow students time to complete Exercises 6-9 on their own. If students are having difficulty finding the correct answer using one method, suggest that they try using a different method.

\section*{MP2 Reason abstractly and}
quantitatively. Extend Exercise 8 by asking students if a rectangle that has an area of 40 square meters is larger than, smaller than, or the same size as a rectangle that has an area of 40 square feet. Ask them to explain their answers. Larger, because 1 square meter is larger than 1 square foot, so 40 square meters would be larger than 40 square feet.
MP4 Model with mathematics. Exercise 10 requires students to understand the concept of area in order to draw rectangles of their own. The problem requires students to start with the area to find appropriate side lengths. Since students have not learned multiplication facts for 12 , encourage them to write an addition equation if they draw a rectangle that is 2 units by 12 units.

\section*{Additional Example}

\section*{Area•Unknown Product}
- Jason is installing tile in an office. The area of each tile is 1 square foot. The office is 8 feet long and 10 feet wide. What is the area of the office? How many tiles does Jason need? 80 square feet 80 tiles

Name

\section*{On Your Own}

Find the area of the figure.
Each unit square is 1 square foot.


12 square feet
Find the area of the figure.
Each unit square is 1 square meter.
8.


40 square meters
7.


20 square feet
9.


25 square meters
10. rectangles with an area of 24 square units. Then write an addition or multiplication equation for each.


Possible equations: \(12+12=24\) square units; \(3 \times 8=24\) square units;
\(4 \times 6=24\) square units

\section*{PROBLEM TYPE SITUATION}

\section*{Multiplication and Division}

Area • Unknown Product
Exercise: 11
11. GODGFPR Compare the areas of the two rugs at the right. Each unit square represents 1 square foot. Which rug has the greater area? Explain.
Areas are the same. Possible explanation: the green rug
has 4 rows of 3 or \(4 \times 3=12\) square feet; the purple rug

has 3 rows of 4 or \(3 \times 4=12\) square feet.
12.

THINK SMARAER A tile company tiled a wall using square tiles. A mural is painted in the center. The drawing shows the design. The area of each tile used is 1 square foot.

Write a problem that can be solved by
 using the drawing. Then solve your problem.

Possible problem: A wall is tiled using yellow tiles and hand-
painted tiles. How many more square feet of yellow tiles were
used than square feet of hand-painted tiles?; 2 more square feet
13. THINKSMARIEX Colleen drew this rectangle. Select the equation that can be used to find the area of the rectangle. Mark all that apply.


658

\section*{DIFFERENTIATED INSTRUCTION INDEPENDENT ACTIVITIES}


Differentiated Centers Kit

\section*{Activities}

Jump to 9


Students complete blue Activity Card 6
by measuring and then adding lengths.

\section*{Activities}

Hurray for Arrays!

by using arrays to model multiplication facts.

\section*{4) ELABORATE}

\section*{Problem Solving • Applications (cien MATH:MATICAL Practices \\ GODEEPER}

For Exercise 11, be sure students find the area of each rug and not just compare the areas visually.

\section*{THINK SMARTER}

Exercise 12 has students write and solve their own problems. Be sure that students explain the method they used in their solution.


\section*{Math on the Spot Video Tutor}

Use this video to help students model and solve this type of Think Smarter problem.

Math on the Spot videos are in the Interactive Student Edition and at www.thinkcentral.com.

\section*{THINK SMARTER}

This item assesses whether students can represent an area model with addition or multiplication equations. Students should understand that area can be found by multiplying the number of columns and rows in the model or by adding the number of squares in each row or column the correct number of times.

\section*{5 EVALUATE \\ Formative Assessment}

\section*{Essential Question \\ Using the Language Objective}

Reflect Have students work in pairs to discuss and develop a clear reason to answer the Essential Question.
Why can you multiply to find the area of a rectangle? A rectangle covered by unit squares is like an array. It has rows of unit squares with an equal number of unit squares in each row. So I can use multiplication to find the area of a rectangle just like I can use an array to solve a multiplication problem.

\section*{Math Journal WRITE Math}

Describe each of the three methods you can use to find the area of a rectangle.

\section*{Practice and Homework}

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers.

\section*{Name}

\section*{Use Area Models}

Find the area of each shape. Each unit square is 1 square foot.
1.


Lesson 11.6


COMMON CORE STANDARDS-
3.MD.C.7, 3.MD.C.7a Geometric 3.MD.C.7, 3.MD.C.7a Geometric
measurement: understand concepts of area and relate area to multiplication and to addition.
2.


There are 3 rows of 8 unit squares. \(3 \times 8=24\)

24 square feet
16 square feet

\section*{Find the area of each shape.}

Each unit square is 1 square meter.
3.

4.

12 square meters
24 square meters
5.

15 square meters

\section*{Problem Solving}
6. Landon made a rug for the hallway. Each unit square is 1 square foot. What is the area of the rug?

7. Eva makes a border at the top of a picture frame. Each unit square is 1 square inch. What is the area of the border?


20 square feet
8. WRITE Math Describe each of the three methods you can use to find the area of a rectangle.

Check students' work.

\section*{CCSS.Math.Practice.MP8 Look for and express regularity in repeated reasoning.}

In Chapter 3, students learned how to find a total amount first by counting. They transitioned from counting to using equal groups and repeated addition to find a total amount. They then learned how repeated addition is related to multiplication and learned how to multiply to find a product.

Students use this same reasoning to find the area of rectangles using counting, repeated addition, and multiplication.

Ask students the following to connect finding total amounts to finding the area of a rectangle:
- How is counting equal groups similar to finding the area of a rectangle? How is it different? Similarities: I can count to find both a total amount and the area of a rectangle. Differences: When I count equal groups, there may be space between each object in the group. When I count unit squares, there is not space between each unit square
- How is using repeated addition to find a total amount like using repeated addition to find the area of a rectangle? I can use repeated addition to find area like I do to find a total amount. I find the number of groups (or rows) and how many objects (or unit squares) are in each group (or row), and then I add.
- How is using an array to find a product like using multiplication to find the area of a rectangle? Finding a product using an array is like finding the area of a rectangle using multiplication. Rectangles are like arrays and involve rows with the same number of unit squares.


Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.

\section*{Monitoring Common Core Success}

\section*{Maintaining Focus on the Major Work}

In Grade 3, the major work includes understanding concepts of area and relating area to multiplication and addition (3.MD.C). In Lessons 11.1-11.3, students develop an understanding of perimeter, which is necessary to distinguish linear and area measures. In Lessons 11.4 and 11.5, students connect area to addition by partitioning shapes into individual square units and adding to find the area. In Lesson 11.6, students explore how both addition and multiplication can be used to calculate area.

\section*{Connecting Content Across Domains and Clusters}

In Lessons 11.1-11.3, students recognize perimeter as an attribute of plane figures (3.MD.D). In Lessons 11.4 and 11.5, students develop concepts of area (3.MD.C), which is necessary to distinguish linear and area measures (3.MD.D). The models used throughout the lessons highlight the similarities and differences between these measures, using unit squares, addition, and multiplication to find each measure. Students' work using
addition and multiplication draws on their skills in using operations to solve problems (3.OA.D).

\section*{Building Fluency}

In Grade 3, Standard 3.NBT.A. 2 requires students to add and subtract fluently within 1,000 . Students work heavily within 3.NBT.A. 2 when adding linear units of perimeter or square units of area. By continuing to apply addition to other areas of mathematics, such as geometry, students improve their abilities in adding whole numbers and recognizing situations in which addition may be used to solve problems.

The Personal Math Trainer's standards quizzes allow for targeted practice to help build fluency. Use Personal Math Trainer: Standards Quiz 3.NBT.A. 2 to strengthen students' mastery of applying addition to problems.

\section*{Problem Solving • Areas of Rectangles}

\section*{focus conerence nigor LESSON AT A CLANCE}

\section*{FCR Focus:}

Common Core State Standards
3.MD.C.7b Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.
Also 3.OA.A.3, 3.0A.C.7, 3.OA.D. 9
MATHEMATICAL PRACTICES (See Mathematical Practices in GO Math! in the Planning Guide for full text.) MP1 Make sense of problems and persevere in solving them. MP2 Reason abstractly and quantitatively. MP6 Attend to precision. MP7 Look for and make use of structure.
F CRR Coherence:
Standards Across the Grades
Before Grade 3 After
2.G.A. 2 3.MD.C.7b 4.MD.A. 3

FCR Rigor:
Level 1: Understand Concepts \(\qquad\) Share and Show (Checked Items)
Level 2: Procedural Skills and Fluency. .On Your Own, Practice and Homework
Level 3: Applications \(\qquad\) Think Smarter and Go Deeper

\section*{Learning Objective}

Solve area problems using the strategy find a pattern.

\section*{Language Objective}

Student pairs write up a recommendation for using the strategy find a pattern to solve area problems.

\section*{Materials}

MathBoard

\footnotetext{
F CR
For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.
}

\section*{About the Math}

\section*{Professional Development}

\section*{MP1 Make sense of problems and persevere in solving them.}

In this lesson, students are presented with real-world, multistep problems. Students practice making and implementing a plan, including using the strategy find a pattern, to solve these problems.

Students must identify what information they need to find and what information is given. They must also be able to identify how to use the given information. This process of carefully identifying knowns and unknowns and implementing a plan will be crucial to students' success throughout their mathematical education.

Interactive Student Edition
Personal Math Trainer


Math on the Spot Video
iT iTools: Geometry

\section*{Daily Routines}

\section*{Common Core}

\section*{Problem of the Day 11.7}

A ticket to a play for an adult costs \(\$ 9\). A ticket for a child costs \(\$ 7\). How much does it cost to buy 2 adult tickets and 3 child tickets?

\section*{Vocabulary}


\section*{Fluency Builder \(\begin{aligned} & \text { common core flue } \\ & \text { Standard } 3.0 \mathrm{~A} . \mathrm{C} 7\end{aligned}\)}

Mental Math Provide students with the following expressions to review division. Either read the expressions aloud or write them on the board.
\[
\begin{array}{ll}
8 \div 24 & 16 \div 28 \\
20 \div 102 & 27 \div 39 \\
25 \div 55 & 24 \div 46
\end{array}
\]

\section*{1) ENGAGE}

\section*{with the Interactive Student Edition}

\section*{Essential Question}

How can you use the strategy find a pattern to solve area problems?

\section*{Making Connections}

Invite students to tell you what they know about area.
What information do you need to know to find the area of a rectangle? length and width How do you find the area of a rectangle? Multiply length times width.

\section*{Learning Activity}

What is the problem the students are trying to solve? Connect the story to the problem.
- What problem are you being asked to solve? the area of the new rest stop
- What are the measurements of the old rest stop? 5 yards long and 3 yards wide
- How are the measurements of the new rest stop changing? The width will be doubled.

\section*{Literacy and Mathematics \\ Choose one or more of the following activities.}
- Have students write a letter to the county council in which they either support or oppose the enlargement of the rest stop. Have students share their letters with the class.
- Have students list how the area of the new rest stop would change if the area of the old rest stop measured 5 yards wide and 3 yards long.

\section*{LESSON 11.7}

\section*{2 EXPLORE}

Progress
to Algebra
3.MD.C.7b Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.

\section*{Unlock the Problem \\ (mine MATH:MATICAL PRACTICES}

This problem uses patterns to help students make generalizations about what happens to the area of a figure when one of its dimensions is changed.
- About how much bigger does Building \(B\) look than Building A? \(B\) is about twice as big as A.
- What about Buildings \(C\) and \(D\) ? D looks about twice as big as C
Have students fill in the table.
- What do you notice about the length and width of Buildings \(\boldsymbol{A}\) and \(B\) ? The width doubles, but the length stays the same.
- What do you notice about the area of Buildings \(\boldsymbol{A}\) and \(\boldsymbol{B}\) ? The area of Building \(B\) is double the area of Building \(A\).
- What pattern do you see in the length, width, and area of Buildings \(C\) and \(D\) ? the same pattern as Buildings \(A\) and \(B\) : the length stays the same, the width and area of Building \(D\) is double that of Building \(C\).
- How does the area change if the length stays the same and the width doubles? The area doubles.

\section*{MP2 Reason abstractly and quantitatively.}
- How would the area change if both the length and the width were doubled? The area would be 4 times the original area.
MP8 Look for and express regularity in repeated reasoning. Ask students to predict what would happen to the area if the length stayed the same, but the width tripled. The area would triple.

\section*{Gㄴㄴ Strategy:}

Restate
By restating the definition in a tangible way using tiles, students can understand the term doubling.
- Have students make a rectangle using a total of 6 tiles in 2 rows of 3 tiles each.
- Have students double the area by adding 3 tiles to the end of each row.
- Tell students the length of each row doubled. Ask students what happened to the area of the rectangle. The area doubled.
- Continue with other examples.

Name
Problem Solving • Area of Rectangles
Essential Question How can you use the strategy find a pattern to solve area problems?

\section*{PROBLEM SOLVING} Lesson 11.7

Common
Core
Also \(3.04 . A\) and Also 3.OA.A.3, 3.OA.C.7, 3.OA.D. 9 MATHEMATICAL PRACTICES MP1, MP2, MP7

\section*{Unlock the Problem}

Mr. Koi wants to build storage buildings, so he drew plans for the buildings. He wants to know how the areas of the buildings are related. How does the area change from the area of Building \(A\) to the area of Building \(B\) ? How does the area change from the area of Building \(C\) to the area of Building \(D\) ?
Use the graphic organizer to help you solve the problem.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Read the Problem} \\
\hline \multicolumn{2}{|l|}{What do I need to find?} & \multicolumn{3}{|r|}{What information do I need to use?} & \multicolumn{3}{|r|}{How will I use the information?} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
I need to find how the areas will change from \(A\) to \(B\) and from
\(\qquad\) \\
C to \(\qquad\) D .
\end{tabular}} & \multicolumn{3}{|l|}{I need to use the length and width of each building to find its area.} & \multicolumn{2}{|l|}{I will record the areas in a table. Then I will look for a pattern to see how the areas will change.} \\
\hline \multicolumn{8}{|c|}{Solve the Problem} \\
\hline \multicolumn{8}{|l|}{I will complete the table to find patterns to solve the problem.} \\
\hline & Length & Width & Area & & Length & Width & Area \\
\hline Building \(A\) & 3 ft & 4 ft & 12 sq ft & Building \(C\) & 6 ft & 4 ft & 24 sq ft \\
\hline Building \(B\) & 3 ft & 8 ft & 24 sq ft & Building D & 6 ft & 8 ft & 48 sq ft \\
\hline
\end{tabular}

I see that the lengths will be the same and the widths will be doubled.
The areas will change from \(\underline{12 \mathrm{sq} \mathrm{ft}}\) to \(\underline{24 \mathrm{sq} \mathrm{ft}}\) and from \(\underline{24 \mathrm{sq} \mathrm{ft}}\) to \(\underline{48 \mathrm{sq} \mathrm{ft}}\).
So, when the lengths are the same and the widths are doubled,
the areas will be doubled
Chapter 1
663


\section*{( Try Another Problem}

Mr . Koi is building more storage buildings. He wants to know how the areas of the buildings are related. How does the area change from the area of Building \(E\) to the area of Building \(F\) ? How does the area change from the area of Building \(G\) to the area of Building \(H\) ?

Use the graphic organizer to help you solve the problem.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Read the Problem} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
What do I need to find? \\
I need to find how the areas will change from \(E\) to \(F\) and from \(G\) to \(H\).
\end{tabular}} & \multicolumn{2}{|l|}{What information do I need to use? I need to use the length and width of each building to find its area.} & \multicolumn{3}{|r|}{\begin{tabular}{l}
How will I use the information? \\
I will record the areas in a table. Then I will look for a pattern to see how the areas will change.
\end{tabular}} \\
\hline \multicolumn{8}{|c|}{Solve the Problem} \\
\hline \multicolumn{8}{|c|}{I will complete the table to find patterns to solve the problem.} \\
\hline & Length & Width & Area & & Length & Width & Area \\
\hline Building \(E\) & 5 ft & 8 ft & 40 sq ft & Building G & 10 ft & 8 ft & 80 sq ft \\
\hline Building \(F\) & 5 ft & 4 ft & 20 sq ft & Building H & 10 ft & 4 ft & 40 sq ft \\
\hline
\end{tabular}

The lengths will be the same and the widths will be halved. The areas will change from 40 sq ft to 20 sq ft and from 80 sq ft to 40 sq ft . So, when the lengths are the same and the widths are halved, the areas will be halved.
- How did your table help you find a pattern? Possible answer: the area would be doubled twice, or 4 times greater Possible answer: the table helped me see the

multiplication needed to find the area. Then I was able to
Reason Abstractly more easily compare the areas to see how they change.

664 oth s both sides is doubled? How would the areas change?

\section*{Try Another Problem}

This problem uses patterns to help students understand what happens to the area of a shape when one of its dimensions is halved.
Have students read the problem.
- Which building is bigger, E or F? E
- About how much bigger does the building look? \(E\) is about twice as big as \(F\).
- What about Buildings \(\boldsymbol{G}\) and \(\boldsymbol{H}\) ? \(G\) is about twice as big as \(H\)
- What do you predict will happen to the area of the buildings when the width is halved? The area will be half the original area.
Have students fill out the table.
- What pattern do you see in the length, width, and area of Buildings \(E\) and \(F\) ?
Buildings \(\boldsymbol{G}\) and \(\boldsymbol{H}\) ? The length stays the same, the width and area of the smaller buildings are half the width and area of the larger buildings.
- How does the area change if the length stays the same and the width is halved? The area is halved. Use Math Talk to focus students' understanding on the relationship between doubles and halves.
- What if the length of one side is doubled and the length of the other side is halved? Explain how this would affect the area.
Doubling one side would double the area, but halving the other side would halve the area. So the area would stay the same.

You may suggest that students place completed Try Another Problem graphic organizers in their portfolios.

\section*{COMMON ERRORS}

Error Students do not look at the entire table to make a generalization.
Example Students may conclude that the area of the figures decreases by 20 when the width is halved.
Springboard to Learning Explain to students that in order to find a pattern, they must use multiple examples, not just one. They need to examine what happens to each pair of buildings, not just the first pair, in order to find a pattern.

\section*{(3) EXPLAIN}

\section*{Share and Show}


The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.
MP8 Look for and express regularity in repeated reasoning. After completing Exercise 1, have students make as many generalizations about side lengths and areas as possible.
Exercise 2 requires students to think conceptually about how a change in the length of a shape affects the area of the shape.
Use the checked exercises for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

\section*{MATH BOARD}

Use the table for 1-2.
© 1. Many pools come in rectangular shapes. How do the areas of the swimming pools change when the widths change?

First, complete the table by finding the area of each pool.

Think: I can find the area by multiplying the length and the width.

Then, find a pattern of how the lengths change and how the widths change.

The length stays the same. The widths
increase by 10 feet
Last, describe a pattern of how the area changes.
The areas increase by 80 square feet.
© 2. What if the length of each pool was 16 feet? Explain how the areas would change.
Possible explanation: the areas would double.

\section*{On Your Own}
 pool in the table is 20 feet, and the widths change from 5, to 6, to 7 , and to 8 feet, describe the pattern of the areas.
Possible description: the areas increase by 20 square
feet, from 100 , to 120 , to 140 , and to 160 square feet.

\section*{PROBLEM TYPE SITUATIONS}

\section*{Addition and Subtraction}

\section*{Put Together/Take Apart • Total Unknown}

Exercise: 5

\section*{Multiplication and Division}

\section*{Area •Unknown Factor}

Exercise: 4
4.
(1) Analyze Relationships Jacob has a rectangula garden with an area of 56 square feet. The length of the garden is 8 feet. What is the width of the garden?
5. GODEPER A diagram of Paula's bedroom is at the right. Her bedroom is in the shape of a rectangle. Write the measurements for the other sides. What is the perimeter of the room? (Hint: The two pairs of opposite sides are equal lengths.)

\section*{58 feet}
6.

THINK SMARTERElizabeth built a sandbox that is 4 feet long and 4 feet wide. She also built a flower garden that is 4 feet long and 6 feet wide and a vegetable garden that is 4 feet long and 8 feet wide. How do the areas change?

The area of the sandbox is 16 square feet. The area

of the flower garden is \(\mathbf{2 4}\) square feet. The area of the
vegetable garden is 32 square feet. The areas increase
by 8 square feet.
7. THINK SMARTER Find the pattern and complete the chart.
\begin{tabular}{|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Total Area \\
(in square feet)
\end{tabular} & 50 & 60 & 70 & 80 & 90 \\
\hline \begin{tabular}{l} 
Length \\
(in feet)
\end{tabular} & 10 & 10 & 10 & 10 & 10 \\
\hline \begin{tabular}{l} 
Width \\
(in feet)
\end{tabular} & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{tabular}

How can you use the chart to find the length and width of a figure with an area of 100 square feet?
Possible answer: extend the chart to 100 square feet and continue the pattern:
length 10 feet, width 10 feet. The figure is a square.

\section*{4) ELABORATE}

\section*{(commen MATHEMATICAL PRACTICES}

\section*{MP1 Make sense of problems and persevere in solving them.}
- What operation is the opposite of multiplication? division How can you use division to find the width? Divide the area by the length.

\section*{GODEEPER}

Exercise 5 requires students to analyze the diagram and use what they know about perimeter to answer the question.

\section*{THINK SMARIER}


\section*{Math on the Spot \\ Video Tutor}

Use this video to help students model and solve this type of Think Smarter problem.

Math on the Spot videos are in the Interactive Student Edition and at www.thinkcentral.com.

\section*{THINK SMARTER}

This item assesses how well students can relate length, width, and area of rectangles. Students must complete the chart by finding a pattern for changes in width and corresponding area and then use that pattern to determine the width of a rectangle with an area of 100 square feet.

\section*{5 EVALUATE Formative Assessment}

\section*{Essential Question}

Using the Language Objective
Reflect Have students work in pairs to write up a recommendation to answer the Essential Question.
How can you use the strategy find a pattern to solve area problems? I can make a table to list the lengths and widths of rectangles and find their areas. Then I can examine the table to look for patterns in the lengths, widths, and areas.

\section*{Math Journal WRITE Math}

Write and solve an area problem that illustrates how the use the find a pattern strategy.

\section*{Practice and Homework}

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers.

Problem Solving • Area of Rectangles

Use the information for 1-3.
Lesson 11.7

\section*{COMMON CORE STANDARD—3.MD.C.7b Geometric measurement: understand concepts} of area and
to addition.

An artist makes rectangular murals in different sizes. Below are the available sizes. Each unit square is 1 square meter.

1. Complete the table to find the area of each mural.
\begin{tabular}{|c|c|c|c|}
\hline Mural & \begin{tabular}{c} 
Length \\
(in meters)
\end{tabular} & \begin{tabular}{c} 
Width \\
(in meters)
\end{tabular} & \begin{tabular}{c} 
Area \\
(in square meters)
\end{tabular} \\
\hline A & 2 & 1 & 2 \\
\hline B & 2 & 2 & 4 \\
\hline C & 2 & 4 & 8 \\
\hline D & 2 & 8 & 16 \\
\hline
\end{tabular}
2. Find and describe a pattern of how the length changes and how the width changes for murals A through D.
For each mural, the width doubles and the length stays the same.
3. How do the areas of the murals change when the width changes?
For each mural, the area doubles.
4. WRITE Math Write and solve an area problem that illustrates the use of the find a pattern strategy.
Check students' work.

\section*{Lesson Check \({ }_{\text {(3.мо.с.7b) }}\)}
1. Lauren drew the designs below. Each unit square is 1 square centimeter. If the pattern continues, what will be the area of the fourth figure?


12 square centimeters
\(\qquad\)

\section*{Spiral RevieW (з.оА.А.з, з.мвт.A.3, з.м..A.1, з.мd...5b, з.мd.с.6)}
3. Joe, Jim, and Jack share 27 football cards equally. How many cards does each boy get?
\(\qquad\)
9 cards
4. Nita uses \(\frac{1}{3}\) of a carton of 12 eggs. How many eggs does she use?

\(\qquad\)
6. Neal is tiling his kitchen floor. Each square tile is 1 square foot. Neal uses 6 rows of tiles with 9 tiles in each row. What is the area of the floor?

Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.

\section*{Area of Combined Rectangles}

\section*{focus conerence rigor LESSON AT A GLANCE}

\section*{FCR Focus:}

Common Core State Standards
3.MD.C.7c Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths \(a\) and \(b+c\) is the sum of \(a \times b\) and \(a \times c\). Use area models to represent the distributive property in mathematical reasoning.
3.MD.C.7d Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.

Also 3.MD.C.5, З.MD.C.5a, 3.MD.C.5b, З.MD.C.7b, 3.OA.A.3, 3.OA.B.5, 3.OA.C.7,
3.NBT.A. 2

MATHEMATICAL PRACTICES (See Mathematical Practices in GO Mathl in the Planning Guide for full text.) MP1 Make sense of problems and persevere in solving them. MP3 Construct viable arguments and critique the reasoning of others. MP4 Model with mathematics. MP6 Attend to precision.
MP7 Look for and make use of structure.

\section*{F C R Coherence:}

Standards Across the Grades
Before Grade 3 After
2.G.A. 2 3.MD.C.7c 4.MD.A. 3 3.MD.C.7d

FCR Rigor:
Level 1: Understand Concepts \(\qquad\) Share and Show (Checked Items) Level 2: Procedural Skills and Fluency .On Your Own, Practice and Homework
Level 3: Applications. \(\qquad\) Think Smarter and Go Deeper

\section*{Learning Objective}

Apply the Distributive Property to area models and to find the area of combined rectangles.

\section*{Language Objective}

Students demonstrate and describe to a partner how you can break apart a figure to find the area.

\author{
Materials \\ MathBoard, square tiles
}

F C R For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.

\section*{About the Math}

Professional Development

\section*{MP7 Look for and make use of structure.}

Being able to decompose a complicated figure into parts that are easier or more familiar to work with is an essential skill for geometry students. Also, recognizing that concepts, such as the Distributive Property, can be applied to geometry problems as well as numeric and algebraic problems will deepen students' understanding.
In this lesson, students are presented with figures that are made up of combined rectangles. Students will break the composite figure into smaller rectangles. They will find the area of each of the smaller rectangles and add them in order to find the total area of the combined figure. Students used this same concept to find products using the Distributive Property.

Professional Development Videos

Personal Math Trainer

Math on the Spot Video

\section*{Daily Routines}

\section*{Common Core}

\section*{Problem of the Day 11.8}

Write an addition equation that is related to the multiplication equation \(3 \times 5=15\).
\(3+3+3+3+3=15 ; 5+5+5=15\)
Vocabulary


\section*{Fluency Builder \(\begin{aligned} & \text { Common Core Fluenc } \\ & \text { Standard 3.0A.C. } 7\end{aligned}\)}

Multiplication Facts Write the following multiplication problems on the board. Have students practice their multiplication facts by solving each problem. Remind students that each multiplication problem represents a rectangle area problem.
\[
\begin{aligned}
& 6 \times 318 \\
& 9 \times 436 \\
& 2 \times 714 \\
& 7 \times 963 \\
& 9 \times 872 \\
& 5 \times 420 \\
& 6 \times 848 \\
& 8 \times 324
\end{aligned}
\]

Pages 62-63 in Strategies and Practice for Skills and Facts Fluency provide additional fluency support for this lesson.

\section*{(1) ENGAGE}
with the Interactive Student Edition

\section*{Essential Question}

How can you break apart a figure to find the area?

\section*{Making Connections}

Invite students to tell you what they know about square units.
How is a unit square related to a square unit? A unit square is a square with a side length of 1 unit. It has an area of 1 square unit. What are examples of square units? Possible answer: square inches or square feet

\section*{Learning Activity}

What is the problem the students are trying to solve? Connect the story to the problem.
- What problem are you trying to solve? Find the total area of the seat and the backrest.
- What is going to be painted? the seat and backrest of the bench
- What is the size of the seat? side lengths of 3 feet and 6 feet
- What is the size of the backrest? side lengths of 2 feet and 6 feet
- What does the diagram of the bench look like in the problem? It has several squares. Each unit square is 1 square foot.

\section*{Literacy and Mathematics \\ Choose one or more of the following activities:}
- Have students construct a miniature bench using cardboard and tape. Have students brainstorm how they might find the total area of the seat and backrest of the bench they have created.
- Have students brainstorm real-world situations in which area might need to be found. Then have students write a short problem about one of the situations they came up with.


\section*{2 EXPLORE}

\section*{Unlock the Problem
}

Have students read the problem. Remind them that they have used the Distributive Property and the break apart method using an array to find products.

\section*{Activity}

\section*{MP2 Reason abstractly and quantitatively.}
- How did you decide where to place the vertical line to break apart the rectangle in Step 3? Answers will vary. Possible answer: I decided to place the vertical line breaking apart the rectangle into two smaller rectangles.
- Why do you add the areas of the two smaller rectangles in Step 5? Each of the smaller areas represents only part of the whole area. Together, they make up the whole area.
MP4 Model with mathematics. Point out to students that some numbers may be easier to work with than others. Illustrate the connection between where they place the vertical line and the numbers they will need to add to find the area.

Use Math Talk to help students recognize that the area of the original rectangle stays the same no matter how they choose to break it apart.

\section*{ \\ Strategy: \\ Restate}

Vocabulary in the break-apart strategy can be better understood when restated for students.
- Pair students with similar language levels.
- Draw a rectangle and restate the break apart strategy.
- Have students use sentence frames to discuss how they can break the rectangle apart to find the area. When I break apart the rectangle using a vertical/horizontal line, it makes one shape that measures by \(\qquad\) and another shape that measures
\(\qquad\)
\(\qquad\)
- Have each pair of students draw a rectangle on grid paper and discuss it using the frames.

CONNECT Using the Distributive Property, you found that you could break apart a rectangle into smaller rectangles, and add the area of each smaller rectangle to find the total area. See below.

How can you break apart this figure into rectangles to find its area? Possible equations are given.

( ) One Way use a horizontal line.


STEP 1 Write a multiplication equation for each rectangle.

Rectangle 1: \(3 \times \underline{7}=\underline{21}\)
Rectangle 2: \(3 \times 3=9\)
STEP 2 Add the products to find the total area.
\(\underline{21}+\underline{9}=30\) square units

So, the area is 30 square units

Share and Show Math
1. Draw a line to break apart the figure into rectangles. Find the total area of the figure.

Think: I can draw vertical or horizontal lines to
break apart the figure to make rectangles
Rectangle 1: \(2 \times \underline{7}=\underline{14}\)
Rectangle 2: \(2 \times 3=6\)
\(14+\underline{6}=\underline{20}\) square units
(7) Another Way Use a vertical line.


STEP 1 Write a multiplication equation for each rectangle.

Rectangle 1: \(6 \times \underline{3}=18\)
Rectangle 2: \(3 \times \underline{4}=12\)
STEP 2 Add the products to find the total area.
\(\underline{18}+\underline{12}=\underline{30}\) square units
 check your answer?

Possible line is shown.


Math Talk: Possible explanation: I can count all the unit squares to find the total number of square units.

670
Problem Types: Area • Unknown Product, Put Together/ Take Apart • Total Unknown

\section*{Advanced Learners}

Visual / Spatial Individuals

Materials 1-Centimeter Grid Paper (see eTeacher Resources)
- Ask students to find the areas of the figures below using only multiplication.

Figure A: 21 square units;


Figure \(A\)

Figure \(B: 21\) square units


Figure \(B\)
- Have students draw another figure on grid paper with the same area that is made up of at least 4 rectangles.
- Ask students to exchange drawings and find the area of the figure.

\section*{Connect}

Discuss with students that they will break apart figures that are not rectangles by finding smaller rectangles within the figure. There may be more than one way to do this.

\section*{One Way}

Have students break the figure apart using a horizontal line.
- How did you decide where to place the horizontal line? I looked to see how I could break the figure into two separate rectangles.
- If you had drawn the line in another place, how would you find the area? Possible answer: if I placed the horizontal line anywhere else, I would have to either count or draw a second line to find the area.

\section*{Another Way}

Have students break the figure apart using a vertical line.
- How is using a vertical line to break the figure apart like using a horizontal line? In both cases, I try to break the figure into two separate rectangles.

\section*{Math \\ Talk}

Use Math Talk to discuss how students can break apart
combined rectangles in different ways to check their work.

\section*{3 EXPLAIN}

\section*{Share and Show}


The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.

\section*{COMMON ERRORS}

Error Students forget to add the areas of the smaller figures together.

Example Students may conclude that the area of the figure in One Way is 21 square units.

Springboard to Learning Tell students that they may want to write the areas of the smaller rectangles they find within the original figure to remind them to add to find the total.

Use the checked exercises for Quick Check. Students should show their answers for the Quick Check on the MathBoard.

\section*{(1) Quick Check \\ ARTI \\ If \\ a student misses the checked exercises \\ Then Differentiate Instruction with \\ - Reteach 11.8 \\ - Personal Math Trainer 3.MD.C.7c, 3.MD.C.7d \\ - RtI Tier 1 Activity (online)}

\section*{On Your Own}

\section*{GODEEPER}

Exercise 7 requires students to analyze the shape to determine how to break it apart. They will need to break the shape into three separate rectangles.

MP4 Model with mathematics. Extend Exercise 7 by asking students to find the answer by drawing a different line or lines. Have students explain their answers. Answers will vary. Possible answer: I used one horizontal line to break the shape into three rectangles that have areas of 6,18 , and 6 . The total area is \(6+18+6=30\) square units.

Name

Use the Distributive Property to find the area. Show your multiplication and addition equations.

Equations will vary. Possible equations are given.
© 2.


On Your Own
Use the Distributive Property to find the area. Show your multiplication and addition equations.

Equations will vary. Possible equations are given.
© 3.

\(5 \times 5=25 ; 5 \times 4=20 ; 25+20=45\)
45 square units
4.

\(3 \times 5=15 ; 3 \times 3=9 ; 15+9=24\)
24 square units
5.

\(\underline{2 \times 10=20 ; 2 \times 10=20 ; 20+20=40}\) 40 square units

Draw a line to break apart the figure into rectangles.
Find the area of the figure. Possible lines are shown. Possible equations are given.
6.

7.


Rectangle 1: \(\underline{4} \times \underline{3}=\underline{12}\)
Rectangle 2: \(\underline{2} \times \underline{6}=\underline{12}\)
\(\underline{12}+\underline{12}=\underline{24}\) square units

Rectangle 1: \(\underline{4} \times \underline{3}=\underline{12}\)
Rectangle 2: \(\underline{2} \times \underline{3}=\underline{6}\)
Rectangle 3: \(4 \times 3=\underline{12}\)
\(\underline{12}+\underline{6}+\underline{12}=\underline{30}\) square units
Chapter 11 •Lesson 8

\section*{PROBLEM TYPE SITUATIONS}

\section*{Addition and Subtraction}

\section*{Put Together/Take Apart • Total Unknown}

Exercises: 8, 9, 12
Compare • Difference Unknown
Exercise: 12

\section*{Multiplication and Division}

\section*{Area • Unknown Product}

Exercises: 8, 9, 12

\section*{Problem Solving • Applications}
8. GodEPPER A model of Ms. Lee's classroom is a the right. Each unit square is 1 square foot. Draw a line to break apart the figure into rectangles. What are the areas of the two rectangles? What is the total area of Ms. Lee's classroom?

36 square feet; 42 square feet; 78 square feet

Possible lines are shown for 8-10.
9. David has a rectangular bedroom with a rectangular closet. Each unit square is 1 square foot. Draw a line to break apart the figure into rectangles. What is the total area of David's bedroom?


46 square feet
10. THINK SMARER Explain how to break apart the figure to find its area.

Possible explanation: I drew two vertical lines, breaking the figure into three rectangles. Rectangle

1: \(6 \times 3=18\); Rectangle 2: \(3 \times 5=15\); Rectangle


3: \(7 \times 3=21\). Then, I added each area to find the total
1 unit square \(=1\) square meter
area: \(18+15+21=54\); the area is 54 square meters.
11. Distributive Property to find the area of the figure at the right. Write your multiplication and addition equations.
60 square centimeters; Equations will vary. Possible


1 unit square \(=1\) square centimeter
equations: \(5 \times 10=50 ; 5 \times 2=10 ; 50+10=60\)
12. THINK SMARIER + Pete drew a diagram of his backyard on grid paper. Each unit square is 1 square meter. The area surrounding the patio is grass. How much more of the backyard is grass than patio? Show your work 22 more square meters

\section*{Activities}

Classification Act


Students complete orange Activity Card 18 by classifying two-dimensional shapes based on their attributes.

Activities
Hurray for Arrays!


Students complete blue Activity Card 15 by using arrays to model multiplication facts.

\section*{(4) ELABORATE}

Problem Solving • Applications
(eme MATHEMATCAL PRACTICES
THINK SMARTER


\section*{Math on the Spot \\ Video Tutor \\ Use this video to help students model and solve this type of Think Smarter problem.}

Math on the Spot videos are in the Interactive Student Edition and at www.thinkcentral.com.

MP4 Model with mathematics. Exercise 11 requires students to use higher order thinking skills because they have not yet learned how to multiply with 12.

\section*{THINK SMARTER 4}

\section*{Personal Math Trainer}

Be sure to assign this problem to students in the Personal Math Trainer. It features a video to help them model and answer the problem. For this multi-step problem, students first find the area of the grass part of the diagram by breaking the figure down into three rectangles. Then they should find the area of the patio and subtract the two numbers to find the difference in areas. Students who give answers of 4 or 30 likely did not understand the problem and gave either the area of the patio or the area of the entire backyard.

\section*{5 EVALUATE \\ Formative Assessment}

\section*{Essential Question \\ Using the Language Objective}

Reflect Have students work with a partner to demonstrate and describe the answer to the Essential Question
How can you break apart a figure to find the area? I can break apart a figure into rectangles, find the area of the rectangles, and then add the areas to find the total area of the original figure.

\section*{Math Journal WRITE Math}

Draw a figure that is not a rectangle and find its area. Use grid paper and show each step.

\section*{Practice and Homework}

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers.

\section*{Name}

\section*{Area of Combined Rectangles}

Lesson 11.8
Possible equations are given.
Use the Distributive Property to find the area. Show
your multiplication and addition equations.
1.

\(4 \times 2=8 ; 4 \times 5=20\)
\(\underline{8+20=28}\)
28 square units

Draw a line to break apart the shape into rectangles. Find the area of the shape.
3.

2.

\[
3 \times 4=12 ; 3 \times 5=15
\]
\[
12+15=27
\]
\(\qquad\) square units
Possible lines are shown. Possible equations are given.

Rectangle 1: \(\underline{2} \times \underline{5}=10\) Rectangle 2: \(3 \times \underline{7}=\underline{21}\)
\(10+\underline{21}=\underline{31}\) square units

\section*{Problem Solving}

Possible line is shown.

A diagram of Frank's room is at right. Each unit square is 1 square foot.
4. Draw a line to divide the shape of Frank's room into rectangles.
5. What is the total area of Frank's room?
\(\qquad\) _ square feet

6. WRITE Math Draw a figure that is not a rectangle and find its area. Use grid paper and show each step.
Check students' work.

\section*{}
1. The diagram shows Ben's backyard. Each unit square is 1 square yard. What is the area of Ben's backyard?

2. The diagram shows a room in an art gallery. Each unit square is 1 square meter. What is the area of the room?


18 square yards

3. Naomi needs to solve \(28 \div 7=\square\). What related multiplication fact can she use to find the unknown number?
\(4 \times 7=28\) or \(7 \times 4=28\)
\(\qquad\)
5. The rectangle is divided into equal parts. What is the name of the equal parts?

fourths \(\qquad\)
4. Karen drew a triangle with side lengths 3 centimeters, 4 centimeters, and 5 centimeters. What is the perimeter of the triangle?

Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.

\section*{LESSON 11.9}

\section*{Same Perimeter, Different Areas}

\section*{rocus conerence nigor LESSON AT A GLANCE}

\section*{F C R Focus:}

Common Core State Standards
3.MD.D. 8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters

Also 3.MD.C.5, 3.MD.C.5a, 3.MD.C.5b, 3.MD.C.7b, 3.OA.A.3, 3.OA.C.7, 3.NBT.A. 2
MATHEMATICAL PRACTICES (See Mathematical Practices in GO Math! in the Planning Guide for full text.) MP1 Make sense of problems and persevere in solving them.
MP3 Construct viable arguments and critique the reasoning of others.
MP4 Model with mathematics. MP7 Look for and make use of structure.

\section*{F C IR Coherence:}

Standards Across the Grades
Before Grade 3 After
2.MD.B. 5 3.MD.D. 8 4.MD.A. 3

\section*{F CR Rigor:}

Level 1: Understand Concepts Share and Show (Checked Items) Level 2: Procedural Skills and Fluency .On Your Own, Practice and Homework
Level 3: Applications \(\qquad\) Think Smarter and Go Deeper

\section*{Learning Objective}

Compare areas of rectangles that have the same perimeter.

\section*{Language Objective}

Students each share with their partner the reasons you can use area to compare rectangles with the same perimeter.

\section*{Materials}

MathBoard, square tiles

F C1R For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.

\section*{About the Math}

\section*{Professional Development}

\section*{Teaching for Depth}

In this lesson, students explore and compare rectangles that have the same perimeter but different areas. Empirically, they find that the rectangle with the greatest area is a square.

If time permits, you may wish to have students make all possible whole-unit rectangles that have a perimeter of 12 units and find the area of each. Encourage students to organize their data in a table that shows the length, width, perimeter, and area of each rectangle and look for patterns.
Students should observe that the "skinnier" rectangles have less area, while the "fatter" rectangles have more area. Of the rectangles with a perimeter of 12 , the one that is 3 units long and 3 units wide (the square) has the greatest area.

Professional Development Videos

\section*{CU \\ DICITAL}

SE Interactive Student Edition

Personal Math Trainer

Math on the Spot Video

Animated Math Models

HMH Mega Math

\section*{Daily Routines}

\section*{Common Core}

Problem of the Day 11.9
What is the side length of a square that has a perimeter of 20 inches?

5 inches

\section*{Vocabulary}
```

C(山) Interactive Student Edition
DIGITAL • Multimedia eGlossary

```

\section*{Vocabulary Builder}

Materials Word Definition Map (see eTeacher Resources)
Word Definitions Have students complete a word definition map for the word area. Encourage them to draw information and examples from the lesson. Ask them to use the vocabulary word.


\section*{(1) ENGAGE}

\section*{with the Interactive Student Edition}

\section*{Essential Question}

How can you use area to compare rectangles with the same perimeter?

\section*{Making Connections}

Ask students to tell what they know about area and perimeter.
What is perimeter? the distance around a figure How do you find the area of a figure? Count the number of unit squares needed to cover the figure Think about a rectangular garden. Which would you use to find the amount of fence needed to go around the garden? perimeter

\section*{Learning Activity}

What is the problem the students are trying to solve? Connect the story to the problem. Ask the following questions.
- What is the perimeter of the blanket? 20 feet
- What is the area of the blanket? 24 square feet
- What problem are you being asked to solve? if another blanket with the same perimeter can have a greater area

\section*{Literacy and Mathematics}

View the lesson opener with the students. Then, choose one or more of the following activities:
- Have small groups of students make a poster that includes a chart and drawings showing rectangles with a perimeter of 24 units. Have students identify the rectangles with the greatest and least area. Have students share their examples with the class.
- Have students draw a square on grid paper and then draw a rectangle with the same perimeter. Talk about what they notice about the areas of the two figures.

Lesson 11.9

\section*{LESSON 11.9}

\section*{(2) EXPLORE} or with the same area and different perimeters.

\section*{Unlock the Problem emanywical puactas}

\section*{Activity}

MP4 Model with mathematics. Discuss possible combinations of lengths and widths that will produce a rectangle with a perimeter of 12 feet. Then find the area of each combination.
- Which of the sandboxes has equal side lengths? What figure is that sandbox?
Possible answer: Sandbox 3 has equal side lengths. It is a square.
- Is it possible for Toby to make a rectangular sandbox that has a perimeter of 12 feet and an area of 12 square feet?
Explain. No; all of the possible rectangles that have a perimeter of 12 feet have areas that are not 12 square feet.
- Suppose Toby wanted to make a sandbox with a perimeter of 16 square feet. What are the possible side lengths for the sandbox? 1 ft by 7 ft ; 2 ft by \(6 \mathrm{ft} ; 3 \mathrm{ft}\) by 5 ft ; 4 ft by 4 ft
- What areas will those sandboxes have?
\(7 \mathrm{sq} \mathrm{ft} ; 12 \mathrm{sq} \mathrm{ft} ; 15 \mathrm{sq} \mathrm{ft} ; 16 \mathrm{sq} \mathrm{ft}\), respectively
MP7 Look for and make use of structure.
- What type of figure is the sandbox with the greatest area? The sandbox with the greatest area is a square.

\section*{탠 Strategy:}

\section*{Restate}

By restating in a real life context, students build understanding of the terms area and perimeter.
- Restate how to find the area and perimeter using a number sentence and diagram.
side \(\times \underline{\text { side }}=\underline{\text { area }}\)
\(\underline{\text { side }}+\underline{\text { side }}+\underline{\text { side }}+\underline{\text { side }}=\) perimeter
- In pairs, have students find the area and perimeter of a real-world rectangular shape such as a desk.
- Compare and contrast perimeter and area. Use sentence frames.
- Area and perimeter are different because
\(\qquad\) . However, they are similar because they \(\qquad\) .

Name
Same Perimeter, Different Areas
Essential Question How can you use area to compare rectangles with
the same perimeter?

\section*{Lesson 11.9}

A53 rement and Data- 3. MD.D. 8
 mathematical practices MP2, MP3, MP4, MP6

\section*{Tulock the Problem}

Toby has 12 feet of boards to put around a rectangular sandbox. How long should he make each side so that the area of the sandbox is as large as possible?
- What is the greatest perimeter Toby can make for his sandbox?

12 feet

\section*{Activity}

Materials \(\quad\) square tiles
Use square tiles to make all the rectangles you can
that have a perimeter of 12 units. Draw and label the
sandboxes. Then find the area of each. Possible answers are shown.

1 ft


5 ft

Sandbox 2


4 ft

Sandbox 3


3 ft

Find the perimeter and area of each rectangle.
\begin{tabular}{|l|c|c|}
\hline & Perimeter & Area \\
\hline Sandbox 1 & \(\underline{5}+\underline{1}+\underline{5}+\underline{1}=\underline{12}\) feet & \(\underline{1} \times \underline{5}=\underline{5}\) square feet \\
\hline Sandbox 2 & \(\underline{4}+\underline{2}+\underline{4}+\underline{2}=\underline{12}\) feet & \(\underline{2} \times \underline{4}=\underline{8}\) square feet \\
\hline Sandbox 3 & \(\underline{3}+\underline{3}+\underline{3}+\underline{3}=\underline{12}\) feet & \(\underline{3} \times \underline{3}=\underline{9}\) square feet \\
\hline
\end{tabular}

The area of Sandbox 3 is the greatest.
mathenatical practics ©
So, Toby should build a sandbox that is
3 feet wide and 3 feet long.
Compare How are the sandboxes alike? How are the sandboxes different?

Chapter 11675
Problem Types: Put Together/Take Apart • Both
Addends Unknown, Area • Unknown Product


\section*{Examples Draw rectangles with the}
same perimeter and different areas.
(A) Draw a rectangle that has a perimeter of 20 units and an area of 24 square units.
Possible answer given.
The sides of the rectangle measure
4 units and 6 units
Possible drawing shown.
(B) Draw a rectangle that has a perimeter of 20 units and an area of 25 square units.

The sides of the rectangle measure
5 units and 5 units.
Possible explanation: both rectangles have a perimeter of 20 units. The area of the square for Example \(B\) is greater than the area of the
rectangle for Example \(A\).
Share and Show
1. The perimeter of the rectangle at the right is

10 units. The area is 6 square units.
2. Draw a rectangle that has the same perimeter as the rectangle in Exercise 1 but with a different area. Possible drawing shown.
3. The area of the rectangle in Exercise 2 is

4 square units.
4. Which rectangle has the greater area?
the rectangle in Exercise 1
5. If you were given a rectangle with a certain perimeter, how would you draw it so that it has the greatest area? Possible answer:


I would try to make a square, or as close to a square as I could.
Math Talk: Possible explanation: I noticed in the Activities and Examples
676 that the rectangle that looked most like a square had the greatest area.

\section*{Advanced Learners} \(\because\) Visual / Logical Partners

Materials 1-Centimeter Grid Paper (see eTeacher Resources)
- Have students draw a rectangle that is 3 units by 8 units on grid paper and then find the perimeter and area. They should label it as Rectangle A. Perimeter is 22 units. Area is 24 square units.
- Draw another rectangle that is 5 units by 6 units, and then find the perimeter and area. Label it as Rectangle \(B\). Perimeter is 22 units. Area is 30 square units.
- Use \(<,>\), or \(=\) to compare the perimeters and areas of Rectangles \(\boldsymbol{A}\) and \(\boldsymbol{B}\). Perimeter is \(22=22\); Area is \(24<30\)
- Draw two other rectangles that have the same perimeter as Rectangle \(A\), and label them as Rectangles \(C\) and \(D\). Order the rectangles from least area to the greatest area. Check students' work.

\section*{Examples}
- How did you choose the side lengths for Examples A and B? Possible answer: since the area can be found by multiplying the number of unit squares in each row by the number of rows, I thought of numbers that when multiplied would give a product of 24 for Example A and 25 for Example B.
- Can you use other side lengths for Example B? Explain. No; there is only one rectangle that has a perimeter of 20 units and an area of 25 square units.

Use Math Talk to focus on students' understanding of comparing areas and perimeters.

\section*{3 EXPLAIN}

\section*{Share and Show}


The first problem connects to the learning model. Have students use the MathBoard to explain their thinking.


Use Math Talk to focus on students' understanding of how to draw a rectangle with the greatest area given its perimeter.
- A rectangle has a perimeter of 24 inches. How can you find the side length of a square with this perimeter? Explain. Possible answer: Divide the perimeter by 4, because each side of a square is the same length and perimeter is the sum of the side lengths.

\section*{COMMON ERRORS}

Error Students may confuse area with perimeter.


\section*{Example}

Area \(=3+5+3+5\)
\[
=16 \text { square units }
\]

Springboard to Learning Have students write the definition of each word and draw a picture that demonstrates the meaning.

Use the checked exercises for Quick Check. Students should show their answers for the Quick Check on the MathBoard.
\begin{tabular}{|ll|}
\hline & Quick Check \\
a student misses the checked \\
exercises \\
Differentiate Instruction with \\
• Reteach 11.9 \\
& Personal Math Trainer 3.MD.D. 8 \\
• Rtl Tier 1 Activity (online)
\end{tabular}

\section*{On Your Own}

If students complete the checked exercises, they may continue with the On Your Own section.
MP6 Attend to precision. Exercise 9 requires students to write a question in which 32 square feet is the answer.

\section*{MP2 Reason abstractly and quantitatively.}
- What if you had a non-square rectangle and a square with the same perimeter? Which figure would have the greater area? Give an example to justify your reasoning. the square;
Possible explanation: for Exercise 7, the square has a larger area than the non-square rectangle.

\section*{Additional Example}

Put Together/Take Apart • Both Addends Unknown; Area • Unknown Product
- Felicity has 18 inches of ribbon to put around some rectangular picture frames. The frames all have whole-inch sides. List all the sizes of picture frames she could put 18 inches of ribbon around. Which picture frame will have the greatest area?
1 inch and 8 inch sides; 2 inch and 7 inch sides; 3 inch and 6 inch sides; 4 inch and 5 inch sides; the picture frame with the greatest area is the one with 4 inch and 5 inch sides.

Name

Find the perimeter and the area. Tell which rectangle has a greater area.
© 6.


B
\(A:\) Perimeter \(=8\) units \(;\) Area \(=4\) square units
\(B:\) Perimeter \(=8\) units \(;\) Area \(=3\) square units
Rectangle A has a greater area.

On Your Own
Find the perimeter and the area. Tell which
rectangle has a greater area.
rect
7.

\(A:\) Perimeter \(=16\) units ;
Area \(=\underline{12 \text { square units }}\)
\(B:\) Perimeter \(=16\) units;
Area \(=16\) square units

Rectangle \(\underline{B}\) has a greater area.
8.


A
\(A:\) Perimeter \(=18\) units
Area \(=\underline{20 \text { square units }}\)
\(B:\) Perimeter \(=18\) units ;
Area \(=18\) square units

Rectangle A has a greater area.

is 4 feet wide and 8 feet long. If the answer is 32 square feet, what is the question?

Possible question: What is the area of Todd's garden?

Chapter 11 • Lesson 9

\section*{PROBLEM TYPE SITUATIONS}

\section*{Addition and Subtraction}

\section*{Put Together/Take Apart • Total Unknown}

Exercises: 10, 11

\section*{Multiplication and Division}

Area - Unknown Product
Exercises: 10, 11

11. THINKSMARER Which figure has a perimeter of 20 units and an area of 16 square units?

(A)

0

(C)

(D)

\section*{Connect Rol Reading}

Cause and Effect
Sometimes one action has an effect on another action. The cause is the reason something happens. The effect is the result.

12. (GODEFPER) Sam wanted to print a digital photo that is 3 inches wide and 5 inches long. What if Sam accidentally printed a photo that is 4 inches wide and 6 inches long?

Sam can make a table to understand cause and effect.
\begin{tabular}{|l|l|}
\hline Cause & Effect \\
\hline The wrong size photo was printed. & Each side of the photo is a greater length. \\
\hline
\end{tabular}

Use the information and the strategy to solve the problems.
a. What effect did the mistake have on the perimeter of the photo?

Possible answer: the perimeter
increased by 4 inches.
What effect did the mistake have on the area of the photo?

Possible answer: the area increased by
9 square inches.

678

Activities
Jump to 9


Students complete blue Activity Card 6 by measuring and then adding lengths.

Activities
Perimeter Parade


Students complete orange Activity Card 10 by finding the perimeter of pattern blocks.

Literature
James' Frames


Students read about using perimeter to find how much wood is needed to make picture frames.

\section*{(4) ELABORATE}

\section*{Problem Solving • Applications \\ (ciac) MATHEMATICAL Practic: \\ THINK SMARTER} Red

Exercise 10 requires students to use higher order thinking skills to draw a different rectangle with the same perimeter, but a smaller area.


\section*{Math on the Spot \\ Video Tutor}

Use this video to help students model and solve this type of Think Smarter problem.

Math on the Spot videos are in the Interactive Student Edition and at www.thinkcentral.com

\section*{THINK SMARTER}

This item assesses whether students can distinguish between rectangles that have the same perimeter, but different areas. Students who incorrectly select A or D are meeting just one condition of the problem. Have those students first find the area of each rectangle and then find the perimeter of each, looking for a rectangle with both the given perimeter and area.

\section*{Connect to Reading}

Have students think about cause and effect in literature being studied in class. Use cause and effect to understand how changing lengths and widths affects perimeters and areas.

\section*{5 EVALUATE Formative Assessment}

\section*{Essential Question}

Using the Language Objective
Reflect Have students work with a partner to answer the Essential Question.
How can you use area to compare rectangles with the same perimeter? Possible answer: I can create different rectangles with the same perimeter. Then I can calculate the areas to see how they change.

\section*{Math Journal WRITE Math}

Draw three examples of rectangles that have the same perimeter, but different areas. Note which of the areas is greatest and which is least.

\section*{Practice and Homework}

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers.


\section*{Extend the Math Activity}

Display the table for Perimeter and Area on the board for students to copy and complete.
In this Activity, students can apply the understanding of
cause and effect as presented on page 678.

\section*{Investigate}

Materials 1-Inch Grid Paper (see eTeacher Resources)
- Draw a rectangle on grid paper that has a length of 6 units and a width of 2 units. Record the perimeter and area in the table on the right.
- For Rectangle 2, multiply the length and width by 2. Record the length and width in the table. Record the perimeter and area in the table for Rectangle 2.
- Divide the length and width of Rectangle 1 by 2. Record this length and width in the table for Rectangle 3. Record the perimeter and area in the table for Rectangle 3.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Perimeter and Area } \\
\hline & \begin{tabular}{c} 
Length \\
(in units)
\end{tabular} & \begin{tabular}{c} 
Width \\
(in units)
\end{tabular} & \begin{tabular}{c} 
Perimeter \\
(in units)
\end{tabular} & \begin{tabular}{c} 
Area \\
(in square \\
units)
\end{tabular} \\
\hline Rectangle 1 & 6 & 2 & 16 & 12 \\
\hline Rectangle 2 & 12 & 4 & 32 & 48 \\
\hline Rectangle 3 & 3 & 1 & 8 & 3 \\
\hline
\end{tabular}

\section*{Summarize}
- What happened to the perimeter and area when the sides were doubled? The perimeter was multiplied by 2; the area was multiplied by 4 .
- What happened to the perimeter and area when the sides were divided by 2? The perimeter was divided by 2 ; the area was divided by 4 .

\section*{Lesson Check \({ }_{(3 . \text { м.D...8) }}\)}
1. Draw a rectangle that has a perimeter of 12 units and an area of 8 square units.

Possible drawing:

2. Find the perimeter and the area. Tell which rectangle has the greater area.

A


B


A: Perimeter \(=24\) units
Area \(=\underline{27}\) square units
B: Perimeter \(=24\) units
Area \(=\underline{35}\) square units
Rectangle _B_h has a greater area.

Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.

\section*{LESSON 11.10}

\section*{Same Area, Different Perimeters}

\section*{focus conerace picor LESSON AT A GLANCE}

\section*{F C R Focus:}

Common Core State Standards
3.MD.D. 8 Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

Also 3.MD.C.5, З.MD.C.5a, З.MD.C.5b, З.MD.C.7b, 3.OA.A.3, 3.OA.C.7, З.NBT.A.2
MATHEMATICAL PRACTICES (See Mathematical Practices in GO Math! in the Planning Guide for full text.) MP2 Reason abstractly and quantitatively. MP3 Construct viable arguments and critique the reasoning of others. MP4 Model with mathematics.

\section*{F C R Coherence: \\ Standards Across the Grades \\ Before Grade 3 After \\ 2.MD.B. 5 3.MD.D. 8 4.MD.A. 3}

\section*{F C.R Rigor:}

Level 1: Understand Concepts \(\qquad\) Share and Show (Checked Items)
Level 2: Procedural Skills and Fluency On Your Own, Practice and Homework
Level 3: Applications
Think Smarter and Go Deeper

\section*{Learning Objective}

Compare perimeters of rectangles that have the same area.

\section*{Language Objective}

Student pairs explain how to use perimeter to compare rectangles with the same area.

\section*{Materials}

MathBoard, square tiles

F CR For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.

\section*{About the Math}

Professional Development

\section*{Teaching for Depth}

In this lesson, students compare rectangles that have the same area but different perimeters. They will see that rectangles with two side lengths of 1 unit have the greatest perimeter of rectangles with the same area.

It may be interesting for your advanced students to know that when the perimeters are the same and the areas are different, the rectangle with two side lengths of 1 unit will minimize the area, while the rectangle that is closest to, or is, a square will maximize the area.

The opposite is true for rectangles with the same area but different perimeters. The rectangle with two side lengths of 1 unit will maximize the perimeter, while the rectangle that is closest to, or is, a square will minimize the perimeter.

Professional Development Videos

\section*{SE Interactive Student Edition}

Personal Math Trainer

Math on the Spot Video
\(i\) Tools: Geometry

HMH Mega Math

\section*{Daily Routines}

\section*{Common Core}

\section*{Problem of the Day 11.10}

Jason plants a flower garden according to the table below. How many snapdragons does Jason plant?
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Flower } & \multicolumn{1}{c|}{ Planted in } \\
\hline Tulip & 2 rows of 6 \\
\hline Snapdragon & 4 rows of 4 \\
\hline Lily & 5 rows of 3 \\
\hline Iris & 6 rows of 4 \\
\hline
\end{tabular}

16 snapdragons

\section*{Vocabulary}

- Interactive Student Edition

DIGITAL - Multimedia eGlossary

\section*{Fluency Builder \(\begin{gathered}\text { Common core Fluen } \\ \text { standard } 3.0 . C)\end{gathered}\)}

Mental Math Students should recall their multiplication facts. Practice multiplication facts with 4 and 7.
\begin{tabular}{ll}
\(4 \times 14\) & \(7 \times 17\) \\
\(4 \times 28\) & \(7 \times 214\) \\
\(4 \times 312\) & \(7 \times 321\) \\
\(4 \times 416\) & \(7 \times 428\) \\
\(4 \times 520\) & \(7 \times 535\) \\
\(4 \times 624\) & \(7 \times 642\) \\
\(4 \times 728\) & \(7 \times 749\) \\
\(4 \times 832\) & \(7 \times 856\) \\
\(4 \times 936\) & \(7 \times 963\)
\end{tabular}

\section*{Lesson 11.10}

\section*{2 EXPLORE} given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.

\section*{Unlock the Problem
}

\section*{Activity}

MP4 Model with mathematics. Have students find the possible rectangles that have an area of 16 square meters.
- What are all the pairs of numbers that you can multiply together to get a product of \(\mathbf{1 6}\) ? 1 and 16,2 and 8,4 and 4
- Look at the rectangle with the least perimeter. How do its side lengths compare to the side lengths of other rectangles? Possible answer: all 4 side lengths are the same. Other rectangles have side lengths that are not the same
- Look at the rectangle with the greatest perimeter. How do its side lengths compare to the side lengths of other rectangles? Possible answer: the rectangle has one side length of 1 and one side length that is greater than any of the side lengths of other rectangles.

\section*{Math}

Use Math Talk to focus on the process used to find the lengths and widths of the rectangles.

MP7 Look for and make use of structure.
- What happens to the perimeters as the lengths and the widths of the rectangles get closer to each other in value? The perimeters decrease.

\section*{ \\ Strategy:} Develop Meanings
Students enhance their comprehension of the terms area and perimeter by describing in words or drawing what they have learned.
- Ask students to draw 3 rectangles: one that is 3 by 4 , one that is 2 by 5 , and one that is 6 by 2 . Label the rectangles \(A, B\), and \(C\).
- Develop the meanings of perimeter and area by discussing the shapes.
- The ___ and __ shapes have the same perimeter. \(A\) and \(B\) The \(\qquad\) and \(\qquad\) shapes have the same area because \(\qquad\) A and
\(C\); the product of both sets of side lengths is 12

Name

\section*{Lesson 11.10}

Same Area, Different Perimeters
Essential Question How can you use perimeter to compare rectangles with the same area?

Measurement and Data-3.MD.D. 8 Also 3.MD.C.5, 3.MD.C.5a, 3.MD.C.5 3.MD.C.7b, 3.OA.A.3, 3.OA.C.7, 3.NBT.A. 2 MATHEMATICAL PRACTICE MP2, MP3, MP4, MP6

\section*{Unlock the Problem}

Marcy is making a rectangular pen to hold her rabbits. The area of the pen should be 16 square meters with side lengths that are whole numbers. What is the least amount of fencing she needs?
- What does the least amount of fencing represent?
perimeter

\section*{See below.}
] Activity Materials \(=\) square tiles
Use 16 square tiles to make rectangles. Make as many different rectangles as you can with 16 tiles. Record the rectangles on the grid, write the multiplication equation for the area shown by the rectangle, and find the perimeter of each rectangle.

Check students drawings. Possible equations given.


Area: \(1 \times 16=16\) square meters
Area: \(2 \times 8=16\) square meters
Area: \(\underline{4} \times \underline{4}=16\) square meters
To use the least amount of fencing, Marcy should make a rectangular
pen with side lengths of \(\quad 4 \quad\) meters and \(\quad 4\) meters.
So, 16 meters is the least amount of fencing Marcy needs.

Problem Types: Area • Both Factors Unknown, Put Together/Take Apart • Total Unknown


Try This!


\section*{Share and Show MATH}
1. The area of the rectangle at the right is

9 square units. The perimeter is 12 units.
2. Draw a rectangle that has the same area as the rectangle in Exercise 1 but with a different perimeter. Possible drawing shown.
3. The perimeter of the rectangle in Exercise 2 is

20 units.
4. Which rectangle has the greater perimeter?
the rectangle in Exercise 2
5. If you were given a rectangle with a certain area, how would you draw it so that it had the greatest perimeter? Possible answer:

I would make a rectangle with a side length of 1 unit.
Yes; possible explanation: we both drew a rectangle that has 1 row of 9 squares.


682

\section*{Advanced Learners Visual / Spacial Individuals}

Materials 1-Centimeter Grid Paper (see eTeacher Resources)
- Have students draw a rectangle that is 3 units by 8 units on grid paper and then find the perimeter and area. They should label it as Rectangle A. Perimeter is 22 units. Area is 24 square units.
- Draw another rectangle that is 2 units by 12 units, and then find the perimeter and area. Label it as Rectangle B. Perimeter is 28 units. Area is 24 square units.
- Draw two other rectangles that have the same area as Rectangle \(A\), and label them as Rectangles \(C\) and \(D\). Order the rectangles from least perimeter to greatest perimeter. Check students' work.
- Repeat with rectangles that have an area of 18 square units, and then with 36 square units. Ask students to look for a pattern.

Use the checked exercises for Quick Check. Students should show their answers for the Quick Check on the MathBoard.
\begin{tabular}{|ll|}
\hline If & Quick Check \\
\begin{tabular}{l} 
a student misses the checked \\
exercises
\end{tabular} \\
Then \begin{tabular}{l} 
Differentiate Instruction with \\
• Reteach 11.10 \\
• Personal Math Trainer 3.MD.D. 8 \\
• Rtl Tier 1 Activity (online)
\end{tabular} \\
\hline
\end{tabular}

\section*{On Your Own}

If students complete the checked exercises correctly, they may continue with the On Your Own section.

\section*{THINKSMARIER}

\section*{MP2 Reason abstractly and} quantitatively. Exercise 9 requires students to analyze the dimensions of a shape abstractly in order to answer the question.

\section*{Math on the Spot Video Tutor}

Use this video to help students model and solve this type of Think Smarter problem.

Math on the Spot videos are in the Interactive Student Edition and at www.thinkcentral.com.

\section*{MP7 Look for and make use of structure.}
- Assume that you have several rectangles with the same area. One is a square, and one has a length of 1 unit. Which has the greatest perimeter? Which has the least perimeter? The square has the least perimeter. The rectangle with a length of 1 unit has the greatest perimeter.

Name
Find the perimeter and the area. Tell which rectangle has a greater perimeter.
© 6.

\(A:\) Area \(=4\) square units \(;\) Perimeter \(=8\) units
\(B:\) Area \(=4\) square units \(;\) Perimeter \(=10\) units
Rectangle \(\quad B\) has a greater perimeter.

\section*{On Your Own}

Find the perimeter and the area. Tell which rectangle has a greater perimeter.


B
\(A:\) Area \(=\underline{24}\) square units ;
Perimeter \(=22\) units
\(B:\) Area \(=\underline{24 \text { square units ; }}\)
Perimeter \(=20\) units
Rectangle \(\underset{A}{ }\) has a greater perimeter.
8.

\(A:\) Area \(=30\) square units \(;\) Perimeter \(=26\) units
\(B:\) Area \(=30\) square units
Perimeter \(=\quad 34\) units


Rectangle \(\quad B\) has a greater perimeter.
9. \(\qquad\) Sense or Nonsense? Dora says that of all the possible rectangles with the same area, the rectangle with the largest perimeter will have two side lengths that are 1 unit. Does her statement make sense? Explain.
Yes; possible explanation: this will make the other two side lengths as large as possible.
Lesson 10 •Chapter 11683

\section*{PROBLEM TYPE SITUATIONS}

\section*{Addition and Subtraction}

\section*{Put Together/Take Apart • Total Unknown}

Exercises: 10, 11

\section*{Multiplication and Division}

Area • Both Factors Unknown
Exercises: 10, 11
10. Roberto has 12 tiles. Each tile is 1 square inch. He will arrange them into a rectangle and glue 1 -inch stones around the edge. How can Roberto arrange the tiles so that he uses the least number of stones?
a.Explain a Method How will you use what you know about area and perimeter to help you solve the problem? I will find the possible rectangles that have an area of 12 square inches. Then I will compare the perimeters of each possible rectangle.
b. GoDEEPER Draw possible rectangles to solve the problem, and label them \(A, B\), and \(C\).

Letters will vary for each rectangle. Check students'
drawings and sentences.


\section*{(4) ELABORATE}

\section*{Unlock the Problem (8imic) MATHEMATICAL Practic:}

Have students read Exercise 10. The exercise walks students through the steps required to solve any problem.
MP3 Attend to precision. Students must identify what they know and how to use what they know in order to find a solution.

\section*{GODEEPER}

Students need to draw rectangles with areas of 12 square units. Suggest they think of the factors of 12 to help them determine possible lengths and widths.

\section*{THINK SMARTER}

Students should recognize that rectangles having the same area can have different perimeters, and use this understanding to correctly draw two rectangles with the same area and different perimeters. Students who have difficulty in drawing 2 different rectangles with the same area, may not fully understand the concept of linear units and square units.

\section*{5 EVALUATE \\ Formative Assessment}

\section*{Essential Question Using the Language Objective}

Reflect Have students work in pairs to give an explanation to answer the Essential Question.
How can you use perimeter to compare rectangles with the same area? I can create different rectangles with the same area. Then I can calculate the perimeters to see how they change.

\section*{Math Journal WRITE Math}

Draw two rectangles with different perimeters but the same area.

\section*{Practice and Homework}

Use the Practice and Homework pages to provide students with more practice of the concepts and skills presented in this lesson. Students master their understanding as they complete practice items and then challenge their critical thinking skills with Problem Solving. Use the Write Math section to determine student's understanding of content for this lesson. Encourage students to use their Math Journals to record their answers.

Find the perimeter and the area. Tell which rectangle has a greater perimeter.
1.

\(\qquad\) ;
\(B:\) Area \(=\quad 12\) square units ;
Perimeter \(=\quad 16\) units
Rectangle \(\quad B\) has a greater perimeter.

\section*{Problem Solving}

Use the tile designs for 3-4
3. Compare the areas of Design A and Design B.

The areas are the same, 20 square units.
4. Compare the perimeters. Which design has the greater perimeter?
\begin{tabular}{rl} 
A: & Area \(=\frac{8 \text { square units }}{} ;\) \\
& Perimeter \(=\frac{18 \text { units }}{8 \text { square units }} ;\) \\
\(B:\) & Area \(=\frac{12 \text { units }}{} \quad\)
\end{tabular}

COMMON CORE STANDARD-3.MD.D. 8 Geometric measurement: recognize perimeter as anometric measurument: recognize perimeter between linear and area measures.


B

Rectangle \(\quad \boldsymbol{A}\) has a greater perimeter.
\[
\text { Desian } A
\]

Design \(A\)
5. WRITE Math Draw two rectangles with different perimeters but the same area.

Check students' work.

Common PROFESSIONAL Core DEVELOPMENT

Teacher: Look at the rectangles in Exercise 2. How did you find the perimeters of each rectangle?
Sarah: I counted the units around each shape.
Teacher: How did you find the areas?
Ray: I counted the unit squares inside each rectangle.
Marco: I multiplied the length by the width.
Teacher: That's great. You can use either way to find the area of these rectangles. Let's look at the length and width of each rectangle. What are the length and width of Rectangle \(A\) ?

Sarah: The length is 3 units and the width is 4 units.
Teacher: How about Rectangle \(B\) ?
Sarah: \(\quad\) The length is 2 units and the width is 6 units.

Teacher: Which rectangle has the greater perimeter?
Ray: Rectangle \(B\).
Teacher: Can anyone think of a rectangle with an area of 12 square units that has a greater perimeter than Rectangle \(B\) ?
Marco: A rectangle that has a length of 1 unit and a width of 12 units would have a perimeter greater than Rectangle \(B\).
Teacher: That's right, Marco. Great job. How did you know?
Marco: If rectangles have the same area, the rectangle with two side lengths of 1 unit will have the greatest perimeter.
Teacher: That's a great generalization.

\section*{Lesson Check \({ }_{\text {(з.мпо..8) }}\)}
1. Jake drew two rectangles. Which rectangle has the greater perimeter?

2. Alyssa drew two rectangles. Which rectangle has the greater perimeter?


A


Continue concepts and skills practice with Lesson Check. Use Spiral Review to engage students in previously taught concepts and to promote content retention. Common Core standards are correlated to each section.
5. Kyle drew three line segments with these lengths: \(\frac{2}{4}\) inch, \(\frac{2}{3}\) inch, and \(\frac{2}{6}\) inch. List the fractions in order from least to greatest.
4. What fraction names the point on the number line?

6. On Monday, \(\frac{3}{8}\) inch of snow fell. On Tuesday, \(\frac{5}{8}\) inch of snow fell. Write a statement that correctly compares the snow amounts.

\section*{Monitoring Common Core Success}

\section*{Maintaining Focus on the Major Work}

In Grade 3, the major work includes understanding concepts of area and relating area to multiplication and addition (3.MD.C). In Lesson 11.7, students use models to explore how changes in length and width affect area. In Lesson 11.8, they use the fact that area is additive in order to find the areas of combined rectangles. Finally, in Lessons 11.9 and 11.10, students examine how changes in perimeter and area are related.

\section*{Connecting Content Across Domains and Clusters}

In Lessons 11.7 and 11.8, students focus on understanding area by exploring how changes in dimensions affect area and by recognizing area as additive (3.MD.C). This work connects to their work using multiplication to represent problems (3.OA.A) as they use multiplication to find the areas of rectangles. In Lesson 11.8, students also use their skills with the four operations (3.OA.C), deciding how to use multiplication and addition to find the area of combined rectangles. Lessons 11.9 and 11.10 focus on understanding how area and perimeter are related (3.MD.C). Students continue to use their skills in representing problems
(3.OA.A) and using multiplication and addition to solve problems (3.OA.C).

\section*{Building Fluency}

In Grade 3, Standard 3.OA.C. 7 requires students to multiply fluently within 100. By using multiplication to solve various area problems, students build an even greater fluency in multiplication. By continuing to apply multiplication to other areas of mathematics, such as geometry, students improve their abilities at multiplying whole numbers and recognizing situations in which multiplication may be used to solve problems.

Build fluency with Animated Math Models' use of pictorial representation of concepts and skills. Use Animated Math Models: Skill 10—Algebra: Relate Addition and Multiplication to strengthen students' mastery of multiplication.


\section*{Model Perimeter}

Perimeter is the distance around a figure.
Find the perimeter of the figure.

Step 1 Choose a unit to begin counting and label it 1.

\(\mid \leftarrow 1\) unit

Step 2 Count each unit around the figure to find the perimeter.
16 units


So, the perimeter of the figure is 16 units.

\section*{Find the perimeter of the figure. Each unit is 1 centimeter.}

2.

centimeters

centimeters
centimeters

\(\qquad\) centimeters

\section*{Draw Your Perimeter}

Use the grid to draw two different figures that have the given perimeter.
1. 16 units

3. 28 units

2. 24 units

4. 30 units

5. Write Math Eduardo drew a figure that had a perimeter of 20 units. The length of each side was 5 units. What figure could Eduardo have drawn? Explain.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Find Perimeter}

Kelsey wants to know the perimeter of the figure below.
She can use an inch ruler to find the perimeter.
Step 1 Choose one side of the figure to measure. Place the zero mark of the ruler on the end of the side. Measure to the nearest inch. Write the length.

Step 2 Use the ruler to measure the
 other three sides. Write the lengths.

Step 3 Add the lengths of all the sides.
\(1+1+2+1=5\)
So, the perimeter of the figure is 5 inches.

\section*{Use an inch ruler to find the perimeter.}
1.

\(\mathcal{L i}^{\text {in }}\)
in.
\(\qquad\) inches
2.

\(\qquad\) inches

\section*{Find My Perimeter}

Measure each side to the nearest \(\frac{1}{2}\) inch.
Then find the perimeter of each figure.
(Hint: \(\frac{1}{2}+\frac{1}{2}=1\) ).
1.

\(\qquad\) in. + \(\qquad\) in. + \(\qquad\) in. + \(\qquad\) in. \(=\) \(\qquad\) inches
2.

\(\qquad\) in. + \(\qquad\) in. + \(\qquad\) in. + \(\qquad\) in. \(=\) \(\qquad\) inches
3. Write Math Explain how you added the measurements in Exercise 2 to find the perimeter.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Algebra•Find Unknown Side Lengths}

An unknown side length is a side that does not have its length labeled with a number. Instead the side is labeled with a symbol or letter, such as a.

The perimeter of the figure is \(\mathbf{2 0}\) meters. Find the length of side a.
Think: There is only one unknown side length.
Step 1 Add the known side lengths.
\(6+9=15\)
Step 2 Subtract the sum of the known side lengths from the perimeter.
\(20-15=5\)
Step 3 Add to check your work.
\(6+9+5=20 \checkmark\)
So, the unknown side length, \(a\), is 5 meters.
The perimeter of the square is 12 feet.
What is the length of each side of the square?
Think: A square has four sides of equal length.
Step 1 Divide the perimeter by the number of sides.

\[
12 \div 4=3
\]

Step 2 Multiply to check your work.
\[
4 \times 3=12 \checkmark
\]

So, the length of each side, \(x\), is 3 feet.

Find the unknown side lengths.
1. Perimeter \(=18\) centimeters

\(b=\) \(\qquad\) centimeters
2. Perimeter \(=20\) yards


\section*{Perimeter Reasoning}

Find and label the length of each unknown side.
1. Perimeter \(=12\) meters
2. Perimeter \(=24\) feet

3. Perimeter \(=30\) meters

4. Perimeter \(=48\) yards

6. Perimeter \(=35\) yards


\section*{Understand Area}

A unit square is a square with a side length of 1 unit. Area is the measure of the number of unit squares needed to cover a surface. A square unit is used to measure area.

What is the area of the figure?


Step 1 Draw lines to show each unit square in the figure.


Step 2 Count the number of unit squares to find the area.


The area of the figure is 3 square units.

Count to find the area of the figure.
1.


Area \(=\) \(\qquad\) square units Area \(=\) \(\qquad\) square units
3.


Area \(=\) \(\qquad\) square units

\section*{Connect the Dots to Show the Area}

On each piece of dot paper below, a figure has been started.
Use the area to complete the figure by connecting the dots.
Connect the dots to complete the figure with the given area.
1. Area \(=11\) square units

3. Area \(=16\) square units

5. Area \(=13\) square units

2. Area \(=15\) square units

4. Area \(=11\) square units

6. Area \(=11\) square units


\section*{Measure Area}

Find the area of the figure. Each unit square is
1 square inch.


Think: How many unit squares are needed to cover this flat surface?
Step 1 Use 1-inch square tiles. Cover the surface of the figure with the tiles. Make sure there are no gaps (space between the tiles).
Do not overlap the tiles.
Step 2 Count the tiles you used. 5 tiles are needed to cover the figure.

So, the area of the figure is 5 square inches.

Count to find the area of the figure.
Each square is 1 square inch.
1.


Area \(=\) \(\qquad\) square inches
2.


Area \(=\) \(\qquad\) square inches

\section*{Find Area}

Find the area of each figure.
1 unit square is 1 square centimeter. (Hint: two half-unit squares make one unit square.)
1.


Area \(=\) \(\qquad\) square centimeters
3.


Area \(=\) \(\qquad\) square centimeters
5.


Area \(=\) \(\qquad\) square centimeters
2.
4.


Area \(=\) \(\qquad\) square centimeters


Area \(=\) \(\qquad\) square centimeters
6.


Area \(=\) \(\qquad\) square centimeters
7. Write Math How did you find the area in Exercise 6?
\(\qquad\)
\(\qquad\)

\section*{Use Area Models}

Use multiplication to find the area of the figure.
Each unit square is 1 square meter.


Step 1 Count the number of rows. There are 6 rows.

Step 2 Count the number of unit squares in each row. There are 10 unit squares.

\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Step 3 Multiply the number of rows by the number in each row to find the area.
number of rows \(\times\) number in each row \(=\) area
\[
\begin{array}{llll}
6 & \times & 10 & =60
\end{array}
\]

So, the area of the figure is 60 square meters.

Find the area of the figure.
Each unit square is 1 square meter.
1.

2.


\section*{Area Riddles}

\section*{Use the clues to solve the riddle. \\ You may use grid paper to draw the figure.}
1. My sides are all the same length.

My area is 9 square meters. What is the length of one of my sides?
3. I am a rectangle. One of my sides is 8 centimeters long. Another side is 6 centimeters long. What is my area?
5. I am a rectangle. Each of my shorter sides measure 5 meters. My area is 45 square meters. What is the length of each of my longer sides?
7. Write Math How did you find the answer in Exercise 4?
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Problem Solving • Area of Rectangles}

Mrs. Wilson wants to plant a garden, so she drew plans for some sample gardens. She wants to know how the areas of the gardens are related. How will the areas of Gardens A and B change? How will the areas of Gardens C and D change?

Use the graphic organizer to help you solve the
 problem.

\section*{Read the Problem}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
What do I need to find? \\
I need to know how the areas will change from \(A\) to \(B\) and from \(C\) to \(D\).
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
What information do I need to use? \\
I need to use the length and width of each garden to find its area.
\end{tabular}} & \multicolumn{3}{|l|}{\begin{tabular}{l}
How will I use the information? \\
I will record the areas in a table. Then I will look for a pattern to see how the areas will change.
\end{tabular}} \\
\hline \multicolumn{8}{|c|}{Solve the Problem} \\
\hline & Length & Width & Area & & Length & Width & Area \\
\hline Garden A & 2 ft & 6 ft & 12 sq ft & Garden C & 2 ft & 3 ft & 6 sq ft \\
\hline Garden B & 4 ft & 6 ft & 24 sq ft & Garden D & 4 ft & 3 ft & 12 sq ft \\
\hline
\end{tabular}

From the table, I see that the lengths will be doubled and the widths will be the same.
The areas in square feet will change from 12 to \(\underline{24}\) and from 6 to 12 . So, the area will be doulbled.

\section*{Solve.}
1. Mrs. Rios made a flower garden that is 8 feet long and 2 feet wide. She made a vegetable garden that is 4 feet long and 2 feet wide. How do the areas change?

\section*{Find the Missing Information}

\section*{Use the given information to find the missing information in the problem. Write the missing information. Then solve the problem.}
1. Kelly builds a dog run that is 3 feet wide and has an area
of 12 square feet. The length of the dog run is \(\qquad\) feet.
Kelly's brother builds another dog run that is also 3 feet wide, but its area is double that of Kelly's dog run.
What is the length of Kelly's brother's dog run?
\(\qquad\) feet
2. Mrs. Thompson builds a vegetable garden that is 10 meters long and has an area of 40 square meters.

The width of the vegetable garden is \(\qquad\) meters.
She also builds an herb garden that has the same width, but its area is half that of her vegetable garden. What is the length of Mrs. Thompson's herb garden?
\(\qquad\) meters
3. Duane builds a square snow fort that is 4 feet long on
each side. The area of his snow fort is \(\qquad\) square feet. He then builds a second snow fort that has an area that is double the area of his first snow fort. What could the length and width of Duane's second snow fort be?
4. Write Math How did you find the length of Kelly's dog run in Exercise 1?

\section*{Area of Combined Rectangles}

You can break apart a figure into rectangles to find the total area of the figure.


Step 1 Draw a line to break apart the figure into two rectangles.


Step 2 Count the number of unit squares in each rectangle.


Step 3 Add the number of unit squares in each rectangle to find the total area.
\[
12+8=20 \text { unit squares }
\]

So, the area of the figure is 20 square units.

\section*{Draw a line to break apart the figure into rectangles.}

Find the area of the figure.
1.

2.

3.

4.


\section*{Area of a Dream Bedroom}

Draw a diagram of your dream bedroom.
Include in the drawing a sleeping area, a closet, a bathroom, and a study area. Label each area.
One square unit is equal to 1 square foot.


Use your drawing to solve the problems.
1. What is the total area of the sleeping area and the study area?
\(\qquad\)
3. What is the total area of the bedroom, except for the bathroom?
\(\qquad\)
5. Write Math How did you find the answer to Exercise 4?
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Same Perimeter, Different Areas}

You can use perimeter and area to compare rectangles.
Compare the perimeters of Rectangle \(A\) and Rectangle \(B\).
\begin{tabular}{|c|c|}
\hline A & Find the number of units around each rectangle. \\
\hline & Rectangle \(A\) : \(3+2+3+2=10\) units \\
\hline & Rectangle \(B\) : \(4+1+4+1=10\) units \\
\hline B & Compare: 10 units \(=10\) units \\
\hline
\end{tabular}

So, Rectangle \(A\) has the same perimeter as Rectangle \(B\).
Compare the areas of Rectangle \(A\) and Rectangle \(B\).


Find the number of unit squares needed to cover each rectangle.

Rectangle \(A\) : 2 rows of \(3=2 \times 3\), or 6 square units
Rectangle \(B\) : 1 row of \(4=1 \times 4\), or 4 square units
Compare: 6 square units \(>4\) square units
So, Rectangle \(A\) has a greater area than Rectangle \(B\).

Find the perimeter and the area. Tell which rectangle has a greater area.
1.

2.


A: Perimeter = \(\qquad\) Area \(=\) \(\qquad\)
\(B\) : Perimeter \(=\) \(\qquad\)
Area \(=\) \(\qquad\)
Rectangle \(\qquad\) has a greater area.

\section*{Area and Perimeter Match-Up}

Read the description. Write the letter of any figure that matches the description. More than one figure may match a description.

\section*{Description}
1. a rectangle with a perimeter of 16 units
2. a four-sided figure with an area of 4 square units
3. a four-sided figure with an area of 12 square units

Figures

4. a four-sided figure with a perimeter of 8 units

5. Stretch Your Thinking A four-sided figure is made from 24 unit squares. Using whole numbers, what is the smallest possible perimeter? Using whole numbers, what are the side lengths of the rectangle with the smallest perimeter?
\(\qquad\)
\(\qquad\)

\section*{Same Area, Different Perimeters}

Find the perimeter and area of Rectangles \(A\) and \(B\).
Tell which rectangle has a greater perimeter.
Step 1 Find the area of each rectangle. You can multiply the number of unit squares

in each row by the number of rows.
Rectangle \(A: 2 \times 6=12\) square units
Rectangle \(B: 3 \times 4=12\) square units


Step 2 Find the perimeter of each rectangle.
You can add the sides.
Rectangle A: \(6+2+6+2=16\) units
Rectangle B: \(4+3+4+3=14\) units
Step 3 Compare the perimeters. 16 units \(>14\) units.
So, Rectangle \(A\) has a greater perimeter.

Find the perimeter and the area. Tell which rectangle has a greater perimeter.
1.

A: Area = \(\qquad\) ;
Perimeter \(=\) \(\qquad\)
B: Area = \(\qquad\) ;
Perimeter \(=\) \(\qquad\)
Rectangle \(\qquad\) has a greater perimeter.
2.



A: Area \(=\) \(\qquad\)
Perimeter \(=\) \(\qquad\)
B: Area \(=\) \(\qquad\)
Perimeter \(=\) \(\qquad\)
Rectangle \(\qquad\) has a greater perimeter.

\section*{Area and Perimeter Comparisons}

Find the length and width of 4 different rectangles such that each rectangle has an area of 24 square units. Write the length and width of each rectangle in the table. Then find the perimeter of each rectangle and record it in the table.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Rectangles with an area of 24 square units } \\
\hline & Length & Width & Perimeter \\
\hline Rectangle \(\boldsymbol{A}\) & & & \\
\hline Rectangle \(\boldsymbol{B}\) & & & \\
\hline Rectangle \(\boldsymbol{C}\) & & & \\
\hline Rectangle \(\boldsymbol{D}\) & & & \\
\hline
\end{tabular}

Use the table to answer the question.
1. Brian wants to build the rectangle that has the least perimeter. Which rectangle should he build?
3. Can Li build a square with an area of 24 square units, such that the side lengths are whole units? Explain.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)```


[^0]:    F C 1 R For more about how GO Math! fosters Coherence within the Content Standards and Mathematical Progressions for this chapter, see page 623J.

